ПОЕТАПНИЙ СИНТЕЗ ЗРОСТАЮЧОЇ МОДУЛЬНОЇ НЕЙРОННОЇ МЕРЕЖІ ДЛЯ РЕГУЛЯТОРА ТЕМПЕРАТУРИ ТЕПЛОНОСІЯ НА ТЕЦ
Ключові слова:
зростаюча модульна нейронна мережа, генетичний алгоритм, нейрорегулятор, тем-пература теплоносія, ТЕЦАнотація
Розглянуто використання зростаючих модульних нейронних мереж для поетапного синтезу нейромережевого регулятора температури теплоносія на ТЕЦ. Запропоновано архітектуру зростаючої модульної нейромережі на базі тришарового перцептрона, що дозволяє виконувати навчання модулів мережі за допомогою генетичного алгоритму. На прикладі тестової задачі показано скорочення часу та підвищення точності навчання зростаючої нейромережі у порівнянні з нейромережею фіксованої архітектури. На базі запропонованого типу зростаючої мережі успішно розв’язано задачу синтезу нейрорегулятора температури теплоносія на ТЕЦ, який забезпечує заданий добовий відпуск тепла і стабільну середньогодинну температуру зворотного теплоносія.
Посилання
2. Вороновський Г. К. Підвищення енергоефективності алгоритмів централізованого якісного регулювання відпуску тепла від заміської ТЕЦ / Г. К. Вороновський, К. В. Махотіло, С. А. Сергеєв // Енергоефективність та відновлювані дже-рела енергії / під. заг. ред. А. К. Шидловського. — Київ : Українські енциклопедичні знання. 2007. — С. 163—200.
3. Вороновский Г. К. Проблемы и перспективы использования искусственных нейронных сетей в энергетике: Часть I. Моделирование / Г. К. Вороновский, К. В. Махотило, С. А. Сергеев // Проблеми загальної енергетики. — Київ : Інститут загальної енергетики НАНУ, 2006. — № 14. — С. 50—61.
4. Вороновский Г. К. Проблемы и перспективы использования искусственных нейронных сетей в энергетике : Часть 2. Управление / Г. К. Вороновский, К. В. Махотило, С. А. Сергеев // Проблеми загальної енергетики. — Київ : Інститут загальної енергетики НАНУ, 2007. — № 16. — С. 54—67.
5. Ronco E. Modular neural networks: a state of the art / E. Ronco, Peter J. Gawthrop // Technical Report CSC-95026. Centre for System and Control. Faculty of mechanincal Engineering, University of Glasgow, Uk. — 1995.
6. MacLeod C. Incremental growth in modular neural networks / C. MacLeod, G. M. Maxwell, S. Muthuraman // Engineering Applications of Artificial Intelligence, 2009, — 22 (4/5), — P. 660—666.
7. Carpenter G. A. ART-2: self organisation of stable category recognition codes for analog input patterns / G. A. Carpenter, S. Grossberg // Applied optics, 26, 1987. — P. 4919—4930.
8. Alpaydin E. GAL: Networks that grow when they learn and shrink when they forget / E. Alpaydin // International Journal of Pattern Recognition, 1994. — 8, 1, — P. 391—414.
9 Fahlman S. E. The Cascade-Correlation Learning Architecture / S. E. Fahlman, C. Lebiere // In: Touretzky D., (ed.), Advances in neural information processing systems 2. Morgan Kaufmann Publishers., Los Altos CA. 1990, — P. 524 — 32.
10. Ash T. Dynamic node creation in backpropagation networks / T. Ash // Connection science, 1989, — 1, — P. 365—375.
11. Chakraborty G. A growing network which optimises between undertraining and overtraining / G. Chakraborty // IEEE conference on Neural Networks, 2, 1995. — P. 1116—1120.
12. Miller G. F. Designing neural networks using genetic algorithms / G. F. Miller, P. M. Todd, S. U. Hegde // In Proc. 3rd Int. Conf. Genetic Algorithms and Their Applications. San Mateo. — CA: Morgan Kaufmann, 1989. — P. 379—384.
13. Whitley D. Genetic algorithms and neural networks: Optimizing connections and connectivity / D. Whitley,
T. Starkweather, C. Bogart // Parallel Computing. — 1990. — Vol. 14, No. 3. — P. 347—361.
14. Curran D. Applying evolutionary computation to designing neural networks: A study of the state of the art / D. Curran, C. O’Riordan // Technical report NUIG-IT-111002. Galway : National University of Ireland. — 2002.
15. MacLeod C. Incremental evolution in ANNs: neural nets which grow / C. MacLeod, G. Maxwell // Artificial Intelligence Rev. 16. — 2001. — P. 201—224.
16. Himmelblau D. Applied Nonlinear Programming / D. Himmelblau. — McGraw-Hill, 1972.
17. Махотило К. В. Диплоидный генетический алгоритм со смертностью / К. В. Махотило // Международный научно-технический журнал «Проблемы управления и информатики». — 2011. — № 3. — С. 138—150.
18. Yongyong He. A Hierarchical Evolutionary Algorithm for Constructing and Training Wavelet Networks / Yongyong He, Fulei Chu, Binglin Zhong. // Neural Computing & Application. — Springer-Verlag, 2002. — Vol. 10. — P. 357—366.
19. Махотило К. В. Повышение точности моделирования среднечасовой температуры обратного теплоносителя ТЭЦ / К. В. Махотило // Збірник наукових праць Інституту проблем моделювання в енергетиці ім. Г. Є. Пухова. — НАН України, 2009. — Вип. № 53. — С. 118—128.
##submission.downloads##
-
PDF
Завантажень: 62
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Автори, які публікуються у цьому журналі, згодні з такими умовами:
- Автори зберігають авторське право і надають журналу право першої публікації.
- Автори можуть укладати окремі, додаткові договірні угоди з неексклюзивного поширення опублікованої журналом версії статті (наприклад, розмістити її в інститутському репозиторії або опублікувати її в книзі), з визнанням її первісної публікації в цьому журналі.
- Авторам дозволяється і рекомендується розміщувати їхню роботу в Інтернеті (наприклад, в інституційних сховищах або на їхньому сайті) до і під час процесу подачі, оскільки це сприяє продуктивним обмінам, а також швидшому і ширшому цитуванню опублікованих робіт (див. вплив відкритого доступу).