Waveguide Slot Feed Section for Antennas with Circular Polarization
DOI:
https://doi.org/10.31649/1997-9266-2021-156-3-105-112Keywords:
satellite system, horn antenna, circular polarization, waveguide, slot, directional diagram, antenna gainAbstract
Modern information systems use circularly polarized signals. Among them are tracking systems, remote sensing systems, satellite television systems. The use of circularly polarized signals in satellite communication systems allows to combat multipath propagation of signals in the environment, which reduces interference. By reflecting signals from different objects, they transform their polarization. This makes it possible to reduce signal distortions in the receiving device, which increases the information capacity of wireless data transmission channels. In satellite communications, multi-band horn antennas are widely used. The use of such devices allows transmission of signals with high power and reception of signals with low noise level. Such systems are used as powering a reflector antenna with a wide bandwidth. For such applications, a horn antenna device has been proposed in which signals can be excited that produce left-hand circularly polarized signals and right-hand circularly polarized signals. The proposed horn antenna was powered through a slot that was cut in a rectangular waveguide. Due to the 45º angle of the slot, the antenna can generate signals with double circular polarization. The proposed design can be used without polarizing devices, which must be developed separately. The developed design of the horn antenna at the operating frequency of 16 GHz provides a peak antenna gain of 24 dB for signals with right circular polarization and a peak value of a gain of 18 dB for signals with left circular polarization. The polarization isolation is greater than 12 dB. Moreover, at the operating frequency, the maximum value of the reflection coefficient takes on a value of –17 dB. Thus, the developed waveguide slot feed section for antennas with circular polarization provide rather good characteristics in a narrow frequency band.
References
А. Ю. Мирончук, O. O. Шпилька, и С. Я. Жук, «Метод оценивания частотной характеристики канала а OFDM системах на основе фильтрации и экстраполяции пилот-сигналов,» Вісник НТУУ«КПІ». Серія Радіотехніка, Радіоапаратобудування, № 78, с. 36-42, 2019. https://doi.org/10.20535/RADAP.2019.78.36-42 .
O. Yu. Myronchuk, et al., “Two-stage method for joint estimation of information symbols and channel frequency response in OFDM communication systems,” Radioelectron. Commun. Syst., vol. 63, no. 8, pp. 418-429, 2020. https://doi.org/10.3103/S073527272008004X .
O. Myronchuk, et al., “Algorithm of channel frequency response estimation in orthogonal frequency division multiplexing systems based on Kalman filter,” in IEEE 15th Int. Conf. on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering. Lviv-Slavske, 2020. https://doi.org/10.1109/TCSET49122.2020.235385 .
A. V. Bulashenko, S. I. Piltyay, and I. V. Demchenko, “Energy efficiency of the D2D direct connection system in 5G network,” in IEEE Int. Conf. on Problems of Infocommunications. Science and Technology, Kharkiv, 2020, pp. 537-542. https://doi.org/10.1109/PICST51311.2020.9468035 .
A. В. Булашенко, «Оцінка зв’язності D2D комунікацій у мережах 5G,» Вісник НТУУ«КПІ». Серія Радіотехніка, Радіоапаратобудування, № 81, с. 21-29, 2020. https://doi.org/10.20535/RADAP.2020.81.21-29 .
А. В. Булашенко, «Комбінований критерій вибору маршрутизації D2D технології,» Радіоелектроніка, інформатика, управління, № 1, с. 7-13, 2021. https://doi.org/10.15588/1607-3274-2021-1-1 .
A. Bulashenko, et al., “New traffic model of M2M technology in 5G wireless sensor networks,” in IEEE 2nd Int. Conf. on Advanced Trends in Information Theory, 25-27 November 2020, Kyiv, Ukraine, pp. 125-131. https://doi.org/10.1109/ATIT50783.2020.9349305 .
S. I. Piltyay, A. V. Bulashenko, and I. V. Demchenko, “Wireless sensor networks connectivity in heterogeneous 5G mobile systems,” in IEEE Int. Conf. on Problems of Infocommunications. Science and Technology, Kharkiv, 2020, pp. 625-630. https://doi.org/10.1109/PICST51311.2020.9468073 .
А. В. Булашенко, «Розподіл ресурсів для пристроїв малої потужності технології M2M в мережах 5G,» Наукові вісті КПІ, 2020, Вип. 3, с. 7-13. https://doi.org/10.20535/kpi-sn.2020.3.203863 .
G. Virone, et al., “Combined-phase-shift waveguide polarizer,” IEEE Microwav and Wireless Components Letters, vol. 18, no. 8, pp. 509-511, 2008. https://doi.org/10.1109/LMWC.2008.2001005 .
S. I. Piltyay, A. V. Bulashenko, and I. V. Demchenko, “Waveguide iris polarizers for Ku-band satellite antenna feeds,” Journal of Nano- and Electronic Physics, no. 12(5), 05024-1-5, 2020. https://doi.org/10.21272/jnep.12(5).05024 .
S. I. Piltyay, O. Yu. Sushko, A. V. Bulashenko, and I. V. Demchenko “Compact Ku-band iris polarizers for satellite telecommunication systems,” Telecommunications and Radio Engineering, vol. 79, no. 19, pp. 1673-1690, 2020. https://doi.org/10.1615/TelecomRadEng.v79.i19.10 .
S. Piltyay, et al., “Information resources economy in satellite systems based on new microwave polarizers with tunable posts,” Path of Science, vol. 6, no 11, pp. 5001-5010, 2020. https://doi.org/10.22178/pos.55-1 .
L. Polo-Lopez, J. L. Masa, J. L., and J. A. Ruiz-Cruz, “Design of a reconfigurable rectangular waveguide phase shifter with metallic posts,” in European Microwave Conference, Oct. 2017, Nuremberg, Germany. https://doi.org/10.23919/EuMIC.2017.8230730.
Г. С. Кушнір, та ін., «Компактний хвилевідний поляризатор із трьома протифазними штирями,» Вісник Вінницького політехнічного інституту, № 5, c. 97-104, 2020. https://doi.org/10.31649/1997-9266-2020-152-5-97-104 .
Є. І. Калініченко, та ін., «Регульований поляризатор на основі квадратного хвилеводу із діафрагмами та штирями,» Технічна інженерія, вип. 86, № 2, c. 108-116, 2020. https://doi.org/10.26642/ten-2020-2(86)-108-116.
B. Subbarao, and V. F. Fusco, “Compact coaxial-fed CP polarizer,” IEEE Antennas and Wireless Propagations Letters, vol. 3, pp. 145-147, 2004. https://doi.org/10.1109/LAWP.2004.831084 .
S-M. Hwang, et al., “Study on design parameters of waveguide polarizer for satellite communication,” IEEE Asia-Pacific Conference on Antennas and Propagation, Singapore, 2012. https://doi.org/10.1109/APCAP.2012.63332020.
F. F. Dubrovka, et al., “A novel wideband coaxial polarizer,” IEEE International Conference on Antenna Theory and Techniques, Odessa, 2013, pp. 473-474. https://doi.org/10.1109/ ICATT.2013.6650816 .
A. V. Bulashenko, S. I. Piltyay, and I. V. Demchenko, “Optimization of a polarizer based on a square waveguide with irises,” Science-Based Technologies, vol. 47, no. 3, pp. 287-297, 2020. https://doi.org/10.18372/2310-5461.47.14878 .
S. I. Piltyay, A. V. Bulashenko, and I. V. Demchenko, “Compact polarizers for satellite information systems,” in IEEE International Conference on Problems of Infocommunications. Science and Technology, Kharkiv, 2020, pp. 557-562. https://doi.org/10.1109/PICST51311.2020.9467889 .
S. I. Piltyay, et al., “Numerical performance of FEM and FDTD methods for the simulation of waveguide polarizers,” Visnik NTUU KPI Seriia Radiotekhnika, Radioaparatobuduvannia, vol. 84, pp. 11-21, 2021. https://doi.org/10.20535/RADAP.2021.84.11-21.
Е. И. Калиниченко, и др., «Высокоэффективный волноводный поляризатор для спутниковых информационных систем,» Вісник Черкаського державного технологічного університету. Технічні науки, Вип. 4. c. 14-26, 2020. https://doi.org/10.24025/2306-4412.4.2020.217129.
G. Virone, et al., “A novel design tool for waveguide polarizer,” IEEE Transactions on Microwave Theory and Technique, vol. 53, no. 3, pp. 888-894, 2004. https://doi.org/10.1109/TMTT.2004.842491 .
A. A. Kirilenko, D. Yu. Kulik, and L. A. Rud, “Stepped approximation technique for designing coaxial waveguide polarizers,” in IX IEEE Int. Conf. on Antenna Theory and Techniques, Odessa, 2013, pp. 470-472. https://doi.org/10.1109/ICATT.2013.6650815.
A. V. Bulashenko, S. I. Piltyay, and I. V. Demchenko, “Analytical technique for iris polarizers development,” in IEEE Int. Conf. on Prpblems of Infocommunications. Science and Technology, 8-10 Oct. 2020, Kharkiv, Ukraine, pp. 593-598. https://doi.org/10.1109/PICST51311.2020.9467981 .
S. I. Piltyay, A. V. Bulashenko, and I. V. Demchenko, “Analytical synthesis of waveguide iris polarizers,” Telecommunications and Radio Engineering, vol. 79, no. 18, pp. 1579-1597, 2020. https://doi.org/10.1615/TelecomRadEng.v79.i18.10.
A. V. Bulashenko, and S. I. Piltyay, “Equivalent microwave circuit technique for waveguide iris polarizers development,” Visnik NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia, vol. 83, pp. 17-28, 2020. https://doi.org/10.20535/RADAP.2020.83.17-28 .
A. V. Bulashenko, S. I. Piltyay, and I. V. Demchenko, “Wave matrix technique for waveguide iris polarizers simulation. Theory,” Journal of Nano- and Electronic Physics, vol. 12, no. 6, p. 06026, 2020. https://doi.org/10.21272/jnep.12(6).06026.
D. Yu. Kulik, S. A. Steshenko, and A. A. Kirilenko, “Compact polarization plane rotator at a given angle in the square rectangular waveguide,” Telecom. and Radio Engineering, vol. 76, no. 1, pp. 855-864, 2017. https://doi.org/10.1615/TelecomRadEng.v76.i10.20 .
A. A. Kirilenko, et al., “A tunable compact polarizer in a circular waveguide,” IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 2, pp. 592-596, 2019. https://doi.org/10.1109/TMTT.2018.2881089 .
A. Bulashenko, S. Piltyay, Ye. Kalinichenko, and O. Bulashenko, “Mathematical modelling of iris-post sections for waveguide filters, phase shifters and polarisers,” in IEEE 2nd Int. Conf. on Advanced Trends in Information Theory, 25-27 November 2020, Kyiv, Ukraine, pp. 330-336. https://doi.org/10.1109/ATIT50783.2020.9349321.
S. Piltyay, A. Bulashenko, H. Kushnir, and O. Bulashenko, “New tunable iris-post square waveguide polarizers for satellite information systems,” in IEEE 2nd Int. Conf. on Advanced Trends in Information Theory, 25-27 November 2020, Kyiv, Ukraine, pp. 132-137. https://doi.org/10.1109/ATIT50783.2020.9349357.
S. Piltyay, A. Bulashenko, Ye. Herhil, and O. Bulashenko, “FDTD and FEM simulation of microwave waveguide polarizers,” in IEEE 2nd Int. Conf. on Advanced Trends in Information Theory, 25-27 November 2020, Kyiv, Ukraine, pp. 132-137. https://doi.org/10.1109/ATIT50783.2020.9349339.
L. A. Rud, and K. S. Shpachenko, “Polarizers on a segment of square waveguide with diagonally ridges and adjustment iris,” Radioelectronics and Communications Systems, vol. 55, no. 10, pp. 458-463, 2012. https://doi.org/10.3103/S0735272712100044.
F. Dubrovka, et al., “Prediction of eigenmodes cutoff frequencies of sectoral coaxial ridged waveguides,” in Int. Conf. on Modern Problem of Radio Engineering, Telecommunications and Computer Science, 2012, Lviv, Ukraine, pp. 191.
F. Dubrovka, et al., “Boundary problem solution for eigenmodes in coaxial quad-ridged waveguides,” Information and Telecommunication Science, vol. 5, no. 1, pp. 48-61, 2014. https://doi.org/10.20535/2411-2976.12014.48-61 .
S. I. Piltyay, “Numerically effective basis functions in integral equation technique for sectoral coaxial ridged waveguides,” in 14-th Int. Conf. on Math. Methods in Electromagnetic Theory, 28-30 Aug. 2012, Kyiv, Ukraine, pp. 492-495. https://doi.org/10.1109/MMET.2012.6331195 .
F. F. Dubrovka, et al., “Eigenmodes analysis of sectoral coaxial ridged waveguides by transverse field-matching technique. Part 1. Theory,” Visnyk NTUU KPI, Seriia – Radioteknika Radioaparatobuduvannia, vol. 54, pp. 13-23, 2013. https://doi.org/10.20535/RADAP.2013.54.13-23 .
F. F. Dubrovka, et al., “Eigenmodes of coaxial quad-ridged waveguides. Numerical results,” Radioelectronics and Comm. Systems, vol. 57, no 2, pp. 59-69, 2014. https://doi.org/10.3103/S0735272714020010 .
F. Dubrovka, et al., “Compact X-band stepped-thickness septum polarizer,” in IEEE Ukrainian Microwave Week. Kharkiv, 2020, pp. 135-138. https://doi.org/10.1109/UkrMW49653.2020.9252583 .
K. Al-Amoodi, et al., “A compact substrate integrated waveguide notched-septum polarizer for 5G mobile device,” IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 12, pp. 2517-2521, 2020. https://doi.org/10.1109/LAWP.2020.303840.
O. B. Jacobs, J. W. Odendaal, and J. Joubert, “Elliptically shaped quad-ridged horn antennas as feed for reflector,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 756-759, 2011. https://doi.org/10.1109/LAWP.2011.2163050 .
C. Shu, et al., “A wideband dual-circular-polarization horn antenna for mmWave Wireless Communications,” IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 9, pp. 1726-1730, 2019. https://doi.org/10.1109/LAWP.2019.2927933.
H.-Y. Yu, et al., “Wideband circularly polarized horn antenna exploiting open slotted end structure,” IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 2, pp. 267-271, 2020. https://doi.org/10.1109/LAWP.2020.2964623 .
S.V. Yadav and A. Chittora, “Circularly polarized high-power antenna with higher-order mode excitation,” International Journal of Microwave and Wireless Technologies, vol. 1, pp. 1-5, 2021. https://doi.org/10.1017/S1759078721000611 .
W. L. Stutzman, Polarization in Electromagnetic Systems. Artech House, Norwood, 352 p, 2018.
C. A. Balanis, Antenna Theory: Analysis and Design. John Willey and Sons, Hoboken, 2005.
P. J. Clarricoats, and A. D. Olver, Corrugate Horn Antennas. London, U.K.: Peter Peregrinus, 1984, 484 p.
W. Ren, et al., “Full-wave analysis of broad wall slot’s characteristics in rectangular waveguides,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 9, pp. 2436-2444, 2004. https://doi.org/10.1109/TAP.2004.834109 .
Downloads
-
PDF (Українська)
Downloads: 105
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).