Analysis of Ways to Increase Energy Efficiency of Ventilation and Air Conditioning Systems
DOI:
https://doi.org/10.31649/1997-9266-2021-157-4-47-55Keywords:
energy consumption, heating systems, ventilation, air conditioning, heat utilizationAbstract
The aim of the work is the analysis and development of energy efficient solutions for devices for utilization of exhaust air heat in ventilation and air conditioning systems, taking into account the dynamics of climatic and internal operating characteristics. There has been carried out the analysis of scientific, technical and regulatory documentation in the field of improving the energy efficiency of ventilation and air conditioning systems. The influence of life support systems on energy consumption in the world is shown. The description of a technique of technical and economic estimation of power characteristics of active utilizers which work in the conditions different from passport values is given. The influence of deviations of such operational factors as air consumption, outside air temperature before the utilizer, temperature and humidity of exhaust air is considered. A comparative analysis of ways to improve the energy efficiency of ventilation and air conditioning systems has been conducted. The article provides an overview of the main technological and economic barriers that prevent the transition of such systems to a qualitatively new level of energy efficiency. A reasonable choice from a variety of technical solutions is possible only with the introduction of energy and economic efficiency criteria that can be applied to different types of heat recovery systems in ventilation and air conditioning systems. Therefore, the development of new approaches to the analysis of long-term operation, which allow in the early stages of project activities to predict the economic and environmental effects of specific devices in the given conditions of operation of ventilation and air conditioning, is an urgent task.
References
“Global Energy and CO2. Status Report 2018,” IEA Publications, 2019. [Electronic resource]. Available: https://iea.blob.core.windows.net/assets/23f9eb39-7493-4722-aced-61433cbffe10/Global_Energy_and_CO2_Status_Report_2018.pdf
L. Pérez-Lombard, et al., “HVAC systems energy comparisons for an office building,” Proceedings of the Climamed, Lisbon, 2004, pp. 121-127.
H. El-Dessouky, H. Ettouney, and A. Al-Zeefari, “Performance analysis of two stage evaporative coolers,” Chemical Engineering Journal, vol. 102, no. 3, pp. 255-266, 2004.
K. Biswas et al., “Insulation materials for commercial buildings in North America: An assessment of lifetime energy and environmental impacts,” Energy and Buildings, vol. 112, pp. 256-269, 2016.
А. С. Горшков, «Энергоэффективность в строительстве: вопросы нормирования и меры по снижению энергопотребления зданий,» Инженерно-строительный журнал, № 1, с. 9-13, 2010.
Z. Bako-Biro, “Human perception, SBS symptoms and performance of office work during exposure to air polluted by building materials and personal computers,” International Centre for Indoor Environment and Energy, 2004.
Z. Bakó-Biró, et al., “Ventilation rates in schools and pupils’ performance,” Building and environment, vol. 48, pp. 215-223, 2012.
И. А. Губина, и А. С. Горшков, «Энергосбережение в зданиях при утилизации тепла вытяжного воздуха,» Строительство уникальных зданий и сооружений, № 4, с. 209-219, 2015.
V. Vakiloroaya, et al., “A review of different strategies for HVAC energy saving,” Energy conversion and management. vol. 77, pp. 738-754, 2014.
А. С. Табакова, и О. В. Новикова, «Повышение эффективности теплопотребления здания при применении современных систем вентиляции,» Неделя науки СПбПУ, 2015, с. 135-138.
А. А. Бондарук, и Е. А. Голубева, «Системы вентиляции в жилых зданиях с рекуперацией тепла удаляемого воздуха,» Фундаментальные и прикладные исследования молодых учёных, с. 358-360, 2018.
СП 118.13330.2012* Общественные здания и сооружения. Актуализированная редакция СНиП 31-06-2009 (с Изменениями № 1, 2).
L. Z. Zhang, and J. L. Niu, “Performance comparisons of desiccant wheels for air dehumidification and enthalpy recovery,” Applied Thermal Engineering, vol. 22, no. 12, pp. 1347-1367,2002.
De Antonellis S. et al., “Experimental analysis and practical effectiveness correlations of enthalpy wheels,” Energy and buildings, vol. 84, pp. 316-323, 2014.
Г. Е. Каневец, А. В. Кошельник, С. Д. Суима, и О. В. Алтухова, «Повышение эффективности работы пластинчатих теплообменников путем оптимизации конструктивных и режимных параметров,» Енергетика. Екологія. Людина. Наукові праці НТУУ «КПІ», ІЕЕ, с. 133-138, 2011.
Г. Е. Каневец, А. В. Кошельник, О. В. Алтухова, С. Д. Суима, и Л. М. Коваленко, «Разработка алгоритма оптимизационного расчета пластинчатых теплообменников на основе структурно-модульного подхода,» Енергетика. Екологія. Людина. Наукові праці НТУУ «КПІ», ІЕЕ, 398 с, с. 126-132, 2011.
Fernández-Seara J. et al. “Experimental analysis of an air-to-air heat recovery unit for balanced ventilation systems in residential buildings,” Energy conversion and management, vol. 52, no. 1, pp. 635-640, 2011.
M. Rasouli, C. J. Simonson, and R. W. Besant, “Applicability and optimum control strategy of energy recovery ventilators in different climatic conditions,” Energy and Buildings, vol. 42, no. 9, pp. 1376-1385, 2010.
Н. В. Белоногов, «Утилизация теплоты в перекрестноточных пластинчатых рекуператорах,» Сантехника, отопление, кондиционирование, № 2, с. 75-83, 2012.
C. Li, and J. Zhao, “Experimental study on indoor air temperature distribution of gravity air-conditioning for cooling,” Energy Procedia, no. 17, pp. 961-967, 2012.
Q. Xu, S. Riffat, and S. Zhang, “Review of Heat Recovery Technologies for Building Applications,” Energies (19961073), vol. 12, no. 7, 2019.
H. B. Hemingson, C. J. Simonson, and R. W. Besant, “Steady-state performance of a run-around membrane energy exchanger (RAMEE) for a range of outdoor airconditions,” International journal of heat and mass transfer, vol. 54, no. 9-10, pp. 1814-1824, 2011.
A. B. Sulin, and A. S. Marchenko, “Simulation modeling of processes in life support systems,” AIP Conference Proceedings. – AIP Publishing LLC, vol. 2007, no. 1, pp. 65, 2018.
S. K. Padhmanabhan, et al., “Modeling non-uniform frost growth on a finand-tube heat exchanger,” International journal of refrigeration, vol. 34, no. 8, pp. 2018-2030, 2011.
С. М. Анисимов и др., «Утилизация теплоты вытяжного воздуха в перекрестноточном рекуператоре,» Сантехника, отопление, кондиционирование, № 7, с. 79-83, 2014.
О. Д. Самарин, и Ю. В. Ильинский, «Обоснование применения утилизации теплоты вытяжного воздуха с учетом её влияния на систему теплоснабжения,» Вестник МГСУ, № 7, 2011.
V. Vakiloroaya, B. Samali, and K. Pishghadam, “A comparative study on the effect of different strategies for energy saving of air-cooled vapor compression airconditioning systems,” Energy and Buildings, no. 74, pp. 163-172, 2014.
О. Д. Самарин, «О соотношении температурной эффективности теплоутилизаторов и снижения энергопотребления в системах вентиляции,» Энергосбережение и водоподготовка, № 2, с. 40-42, 2009.
S. Tafelmeier, G. Pernigotto, and A. Gasparella, “Annual performance of sensible and total heat recovery in ventilation systems: Humidity control constraints for European climates,” Buildings, vol. 7, no. 2, pp. 28, 2017.
Y. Jiang, and X. Xie, “Theoretical and testing performance of an innovative indirect evaporative chiller,” Solar Energy, vol. 84, no. 12, pp. 2041-2055, 2010.
V. Khalajzadeh, M. Farmahini-Farahani, and G. Heidarinejad, “A novel integrated system of ground heat exchanger and indirect evaporative cooler,” Energy and Buildings, no. 49, pp. 604-610, 2012.
A. Khandelwal, P. Talukdar, and S. Jain, “Energy savings in a building using regenerative evaporative cooling,” Energy and Buildings, vol. 43, no. 2-3, pp. 581-591, 2011.
G. Heidarinejad, M. F. Farahani, and S. Delfani, “Investigation of a hybrid system of nocturnal radiative cooling and direct evaporative cooling,” Building and Environment, vol. 45, no. 6, pp. 1521-1528, 2010.
А. К. Рубцов, Е. Г. Парахина, и Н. А. Гурко, «Форсунка для систем испарительного охлаждения и увлажнения воздуха,» Научный журнал НИУИТМО. Серия «Холодильная техника и кондиционирование», № 1, 2016.
M. S. Elliott, and B. P. Rasmussen, “On reducing evaporator superheat nonlinearity with control architecture,” International journal of refrigeration, vol. 33, no. 3, pp. 607-614, 2010.
О. Б. Цветков, и Ю. А. Лаптев, «Энергосбережение в холодильной технике и проблемы экологии – развитие и перспективы,» Вестник Международной академии холода, № 2, 2011.
А. А. Никитин, Теплонасосные системы как источник тепло- и хладоснабжения зданий. София, 2012, т. 1, с. 207-212.
R. Bunn, «Системы кондиционирования воздуха, предпочитаемые инвесторами,» АВОК, № 5, с. 16-29, 2001.
O. M. Al-Rabghi, and M. M Akyurt, “A survey of energy efficient strategies for effective air conditioning,” Energy conversion and management, vol. 45, no. 11-12, pp. 1643-1654, 2004.
Downloads
-
PDF (Українська)
Downloads: 269
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).