Distribution of Current on the Surface of Sheet Metals in Linear Instruments of Magnetic-Pulse Attraction

Authors

  • Yu. V. Kharkiv National Automobile and Highway University
  • T. V. Gavrylova Kharkiv National Automobile and Highway University
  • S. O. Kharkiv National Automobile and Highway University
  • Ye. O. Chaplygin Kharkiv National Automobile and Highway University

DOI:

https://doi.org/10.31649/1997-9266-2022-163-4-34-40

Keywords:

surface current distribution, inductor system, magnetic flux, equipment for magnetic-pulse metal processing

Abstract

An urgent problem in the development of linear instruments of magnetic pulse attraction is to obtain practical recommendations for improving their efficiency, which is largely determined by the processes of current density distribution on the surface of sheet metals that are prone to deformation. The aim of the work is to calculate the characteristics and theoretical analysis of the spatial distribution of current on the metal surface of a flat sheet blank in the working area of ​​a linear tool of magnetic pulse attraction when directly connected to the electrical terminals of a high voltage power source. To achieve this goal, a rigorous mathematical approach is used using the methods of electromagnetic field theory and methods of conformal transformations in the theory of functions of a complex variable. Formulas for numerical estimates are obtained, which quantitatively illustrate the distribution of currents on the surface of the sheet conductor at the contact connection of the power source. Based on numerical and graphical analysis of different geometric dimensions of this model, it is established that the level of current concentration flowing in the selected strip connecting the connection contacts significantly depends on the ratio of the width of this strip and the transverse dimensions of the contact connection. The part of the current that is directly involved in the excitation of force interaction between conductors with parallel currents in accordance with Ampere’s law is determined. The level of transverse current concentration, which flows mainly in the selected band, is ~ 65… 80 % of the total current, which has been confirmed experimentally. The obtained results allow us to conclude that it is necessary to conduct mandatory assessments of the level of concentration of the flowing current in the working area of the linear tool. Using the conclusions of this work will implement new, more efficient tools in pressure treatment technologies, namely, to create viable linear tools for magnetic-pulse attraction of specified areas of sheet metals when directly connected to sources of electric power.

Author Biographies

Yu. V., Kharkiv National Automobile and Highway University

Dr. Sc. (Eng.), Professor, Head of the Chair of Physics

T. V. Gavrylova, Kharkiv National Automobile and Highway University

Cand. Sc. (Phys-Math.), Associate Professor, Associate Professor of the Chair of Physics

S. O., Kharkiv National Automobile and Highway University

Cand. Sc. (Eng.), Associate Professor, Associate Professor of the Chair of Physics

Ye. O. Chaplygin, Kharkiv National Automobile and Highway University

Cand. Sc. (Eng.), Associate Professor, Associate Professor of the Chair of Physics

References

V. Psyk, D. Rich, B. I. Kinsley, A. E. Tekkaya, and M. Kleiner, “Electromagnetic Forming – A Review,” Journal of Material Processing Technology, no. 211, pp. 787-829, 2011.

E. Iriondo, M. A. Gutiérrez, B. González, J. L. Alcaraz, and G. S. Daehn, “Electromagnetic impulse calibration of high strength sheet metal structures,” Journal of Materials Processing Technology, no. 211, pp. 909-915, 2011.

A. Jaeger, D. Risch, and A.E. Tekkaya, “Thermo-mechanical processing of aluminum profiles by integrated electromagnetic compression subsequent to hot extrusion,” Journal of Materials Processing Technology, no. 211, pp. 936-943, 2011.

G. Inanan, B. Baranoglu, and E. Aydin, “An Application of High-Power Electromagnetic Pulse: Forming of sheet metal using electromagnetic waves,” in Proc. 9th International Conference on Electrical and Electronics Engineering (ELECO), November 2015, p. 284-288.

J.-Y. Shim, B. Y. Kang, D.-H. Park, and I. S. Kim, “A Fundamental Study on Magnetic Pulse Forming with Bar Forming Coil,” Korean Society of Manufacturing Technology Engineers, vol. 20, no. 3, pp. 292-297, 2011.

G. A. Shneerson, M. I. Dolotenko, and S. I. Krivosheev, Strong and Superstrong Pulsed Magnetic Field Generation. Ber- lin: Walter de Gruyter, 2014.

Y. B. Kudasov, et al., “Metal plate deformation under magnetic field pulse of complex shape,” Journal of Applied Physics, vol. 126, no. 8, pp. 084901, 2019.

H. Altenbach, V. Konkin, D. Lavinsky, O. Morachkovsky, and K. Naumenko, “Deformation analysis of conductive metallic components under the action of electromagnetic fields,” [Verformungsanalyse elektrisch leitender metallischer Bauteile bei Magnetimpulsbearbeitung], Engineering Research [Forschung im Ingenieurwesen], vol. 82, no. 4, pp. 371-377, 2018.

W. Benenson, J. W. Harris, H. Stöcker, and H. Lutz, Handbook of Physics, Switzerland: Springer Nature AG, 2002, 1190 p.

А. Ю. Бондаренко, В. Б. Финкельштейн, и А. А. Степанов, «Экспериментальная апробация электродинамической системы с прямым пропусканием тока для внешней рихтовки автомобильных кузовов,» Електротехніка і електромеханіка, № 4, c. 50-52, 2014.

Ю. В. Батигін, С. О. Шиндерук, О. Ф. Єрьоміна, і Є. О. Чаплигін, «Електромагнітні процеси в плоскій прямокутній системі з індуктором між тонкими котушками біфіляра,» Технічна електродинаміка, № 1, c. 3-9, 2021.

Ю. В. Батыгин, E. A. Чаплыгин, С. А. Шиндерук, «Экспериментальные исследования распределения тока на поверхности листовой заготовки в линейных инструментах магнитно-импульсного притяжения,» Електротехніка і Електромеханіка, № 2, c. 46-51, 2020.

H. J. W. Muller-Kirsten, Electrodynamics, 2nd Edition, World Scientific Publishing Company, 2011, 632 p.

L. Kantorovic, Mathematics for Natural Scientists. Fundamentals and Basics, New York: Springer, 2016, 526 p.

Downloads

Abstract views: 111

Published

2022-09-02

How to Cite

[1]
Yu. V., T. V. Gavrylova, S. O., and Y. O. Chaplygin, “Distribution of Current on the Surface of Sheet Metals in Linear Instruments of Magnetic-Pulse Attraction”, Вісник ВПІ, no. 4, pp. 34–40, Sep. 2022.

Issue

Section

ENERGY GENERATION, ELECTRIC ENGINEERING AND ELECTROMECHANICS

Metrics

Downloads

Download data is not yet available.