Investigation of the Mechanical Properties and Wear Resistance of Intermetallic FeAl-Based Plasma Sprayed Coatings
DOI:
https://doi.org/10.31649/1997-9266-2022-163-4-91-96Keywords:
plasma spraying, iron aluminides, hardness, abrasive particles, wear, microindentation, elastic modulus, structureAbstract
Studies of the mechanical characteristics and abrasive resistance of FeAl-based plasma sprayed coatings are presented. Coatings were obtained by plasma spraying method using iron aluminide powders of Fe3Al, Fe-AlMg and Fe-TiAl systems. The powders were prepared by mechanochemical synthesis.
The mechanical characteristics (hardness and elastic modulus) of the coatings were determined by microindentation method. It has been found that the hardness of the coatings is in the range of 2.9…5.4 GPa, the elastic modulus is in the range of 80…100 GPa.
It is shown that the gas-abrasive resistance of all tested coatings at room temperature exceeds the wear resistance of St3 steel 1.4…4.3 times; when dry abrasive/rubber wheel testing the resistance of the coatings exceeds the resistance of St3 2.1…3.8 times. The resistance of Fe3Al, Fe-AlMg and Fe-TiAl coatings is higher 2.2…3.1 times than resistance of St3 steel under conditions of gas-abrasive wear at a temperature of 550 °C; the resistance of Fe3Al and Fe-TiAl coatings under the same conditions exceeds the resistance of heat-resistant steels 1.2…1.5 times. In all cases Fe3Al coating has the highest wear resistance because of low porosity and low content of brittle phases in the coating.
An assessment of the relationship between the mechanical properties of coatings and wear resistance showed that the wear resistance of coatings increases with an increasing of their elastic modulus.
Based on the results of studies the possibility of using FeAl-based coatings for the protection and hardening of parts and constructions operating under conditions of abrasive wear at temperatures range from 20 to 550 °C is shown.
References
П. Кулу, Износостойкость порошковых материалов и покрытий. Таллин: Валгус, 1988.
V. K. Sikka, S. Viswanathan, and C. G. Mc Kaamey, “Development and commercialization status of Fe3Al – based intermetallic alloys,” Struct. Intermetallics: Champion, Pa, Sept. 26-30, 1993.
S. C. Deevi, and V. K. Sikka, “Nickel and iron aluminides: an overview on properties, processing, and applications,” Intermetallics, no. 4 (5), pp. 357-375, 1996. https://doi.org/10.1016/0966-9795(95)00056-9 .
N. S. Stoloff, “Iron aluminides: present status and future prospects,” Materials Science and Engineering, A258, pp.1-14, 1998. https://doi.org/10.1016/S0921-5093(98)00909-5 .
S. C. Deevi, “Advanced Intermetallic Iron Aluminide Coatings for High Temperature Applications,” Progress in Materials Science, vol. 118, no.100769, 2020. https://doi: 10.1016/j.pmatsci.2020.100769 .
Ф. Г. Ловшенко, и А. С. Федосенко, «Плазменные покрытия из механически синтезированных композиционных порошков на основе системы железо-алюминий,» Литьё и металлургия, № 3, с. 84-92, 2020. https://doi.org/10.21122/1683-6065-2020-3-84-92 .
N. Cinca, and J. M. Guilemany, “Thermal spraying of transition metal aluminides: an overview,” Intermetallics, vol. 24. pp. 60-72, 2012. https://doi.org/10.1016/j.intermet.2012.01.020 .
А. Л. Борисова, И. И. Тимофеева, М. А. Васильковская, А. Н. Бурлаченко, и Т. В. Цымбалистая. «Фазовые и структурные превращения при формировании порошков интерметаллиддов системы Fe-Al методом механохимического синтеза,» Порошковая металлургия, № 7-8, с. 135-143, 2015.
Ю. С. Борисов, А. Л. Борисова, А. Н. Бурлаченко, Т. В. Цымбалистая, и Ц. Сендеровски, «Структура и свойства легированных порошков на основе интерметаллида Fe3Al для газотермического напыления, полученных методом механохимического синтеза,» Автоматическая сварка, № 9, с. 40-47, 2017.
Ю. С. Борисов, А. Л. Борисова, Н. В. Вігілянська, О. П. Грищенко, і М. В. Коломицев, «Покриття на основі інтерметалідів Fe-Al, які отримані методами плазмового і надзвукового повітряно-газового плазмового напилення,» Автоматичне зварювання, № 07, с. 32-40, 2020.
S. A. Firstov, V. F. Gorban, and E. P. Pechkovsky, “New methodological opportunities of modern materials mechanical properties definition by the automatic indentation method,” NAS of Ukraine Science and innovations, № 6 (5), с. 7-18, 2010.
Qiaoling Chu et al., “Interfacial Investigation of Explosion-Welded Titanium/Steel Bimetallic Plates,” Journal of Materials Engineering and Performance, vol. 29, pp.78-86, 2020. https://doi.org/10.1007/s11665-019-04535-9 .
Olivier Quénard, Christophe Laurent, Alain Peigney, and Abel Rousset, “Zirconia-spinel composites. Part II: mechanical properties,” Materials Research Bulletin, Elsevier, vol. 35, pp. 1979-1987, 2000. https://doi.org/1016/S0025-5408(00)00409-8.
Downloads
-
PDF (Українська)
Downloads: 101
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).