Alternative Energy: Obtaining Synthetic Oil During the Pyrolysis Processing of Polypropylene Waste

Authors

  • A. P. Ranskyi Vinnytsia National Technical University
  • B. V. Korinenko Vinnytsia National Technical University; V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine

DOI:

https://doi.org/10.31649/1997-9266-2023-167-2-6-14

Keywords:

synthetic oil, pyrolysis liquid, low-temperature pyrolysis, polymer waste, polypropylene, chromatography

Abstract

It has been shown and substantiated the expediency of processing polymer waste, in particular polypropylene waste, by the low-temperature pyrolysis method in order to obtain alternative/renewable energy sources: synthetic oil/pyrolysis liquid, pyrolysis gases and pyrocarbon. Thermodestruction of polypropylene waste on a technological unit of periodic action in the absence of air oxygen and acid catalysts has been investigated. It has been shown that carrying out the low-temperature pyrolysis of polypropylene waste in the temperature range 250…412 °C for 3.5 hours provides the yield of the main product, such as synthetic oil — 78.5 % wt., gas mixture — 13.6 % wt. and pyrocarbon — 5.1 % wt. The results of the perfomed research allow to state that the temperature in the pyrolysis zone of polymer waste has a determining character both on the ratio of the main products of the process — pyrolysis liquid : gas mixture : pyrocarbon, and on the chemical composition of the first two components. By fractional distillation of synthetic oil, gasoline (28.8 % vol.), lignin (12.4 % vol.), kerosene (16.0 % vol.), and diesel (23.6 % vol.) fractions were obtained. Their qualitative and quantitative analysis has been carried out by the gas chromatography. It has been established that the vast majority of compounds in different fractions are saturated hydrocarbons of normal and isomeric structure: for the gasoline fraction, saturated hydrocarbons consist 77.86 % wt., for lingin — 84.15 % wt., for kerosene — 78.92 % wt., for diesel — 60.82 % wt. Based on the obtained research results, a general scheme of thermal destruction of polypropylene waste with the production of saturated and unsaturated (C– C13) liquid hydrocarbons, saturated and unsaturated (C1 – C5) gaseous hydrocarbons, hydrogen and pyrocarbon has been proposed. A small part of alkenes (C6 – C13) can undergo cyclization or aromatization to form naphthenes (C6 – C13) or arenes (C8 – C9).

Author Biographies

A. P. Ranskyi, Vinnytsia National Technical University

Dr. Sc. (Chem.), Professor, Professor of the Chair of Ecology, Chemistry and Environmental Protection Technologies

B. V. Korinenko, Vinnytsia National Technical University; V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine

Post-Graduate Student of the Chair of Ecology, Chemistry and Environmental Protection Technologies, Vinnytsia National Technical University, Vinnytsia; Engineer of the I Category of the Department of № 8 of the V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine

References

L. M. Heidbreder, I. Bablok, S. Drews, and C. Menzel, “Tackling the plastic problem: A review on perceptions, behaviors, and interventions,” Science of the total environment, vol. 668, pp. 1077-1093, Jun. 10, 2019. https://doi.org/10.1016/j.scitotenv.2019.02.437 .

D. J. Lee, J. S. Lu, and J. S. Chang, “Pyrolysis synergy of municipal solid waste (MSW): A review,” Bioresource Technology, vol. 318, pp. 123912, Dec. 2020. https://doi.org/10.1016/j.biortech.2020.123912 .

А. П. Ранський, Б. В. Коріненко, О. А. Гордієнко, і Є. О. Євдокименко, «Альтернативна енергетика: отримання паливних брикетів із пірокарбону термодеструкції полімерних відходів,» Вісник Вінницького політехнічного університету, № 1, с.13-20, 2023. https://doi.org/10.31649/1997-9266-2023-166-1-13-20 .

Б. В. Коріненко, О. С. Худоярова, К. Ю. Гура, і А. П. Ранський, «Циркулярна економіка та термохімічна конверсія твердих відходів,» Вісник Вінницького політехнічного інституту, № 4, с. 7-19, Серп. 31. 2021. https://doi.org/10.31649/1997-9266-2021-157-4-7-19 .

D. DeNeve, C. Joshi, J. Higgins, and J. Seay, “Optimization of an Appropriate Technology Based Process for Converting Waste Plastic in to Liquid Fuel via Thermal Decomposition,” J. Sust. Dev., vol. 10, no. 2, pp. 116, 2017. https://doi.org/10.5539/jsd.v10n2p116 .

S. Kumar, and R. K. Singh, “Recovery of Hydrocarbon Liquid from Waste High Density Polyethylene by Thermal Pyrolysis,” Braz. J. Chem. Eng., vol. 28, pp. 659-667, 2011. https://doi.org/10.1590/S0104-66322011000400011 .

A. K. Panda, R. K. Singh, and D. K. Mishra, “Thermolysis of Waste Plastics to Liquid Fuel. A Suitable Method for Plastic Waste Management and Manufacture of Value Added Products — A World Prospective,” Renew. Sustain. Energy Rev., vol. 14, iss. 1, pp. 233-248, Jan. 2010. https://doi.org/10.1016/j.rser.2009.07.005 .

L. Patil, A. K. Varma, G. Singh, and P. Mondal, “Thermocatalytic Degradation of High Density Polyethylene into Liquid Product,” J. Polym. Environ., vol. 26, pp. 1920-1929, Jun. 29, 2017.

C. Santaweesuk, and A. Janyalertadun, “The Production of Fuel Oil by Conventional Slow Pyrolysis Using Plastic Waste from a Municipal Landfill,” Int. J. Environ. Sci. Dev., vol. 8, no. 3, pp. 168-173, Mar. 2017. https://doi.org/10.18178/ijesd.2017.8.3.941.

S. I. Wong, N. Ngadia, T. A. T. Abdullahb, and I. M. Inuwac, “Current State and Future Prospects of Plastic Waste as Source of Fuel: A Review,” Renew. Sustain. Energy Rev., vol. 50, pp. 1167-1180, Oct. 2015. https://doi.org/10.1016/j.rser.2015.04.063.

C. A. Joshi, and J. R. Seay, “An appropriate technology based solution to convert waste plastic into fuel oil in underdeveloped regions”, J. Sustain. Dev., vol. 9, no. 4, pp. 133-143, Jul. 20. 2016. https://doi.org/10.5539/jsd.v9n4p133 .

C. Joshi, and J. Seay, “Building momentum for sustainable behaviors in developing regions using Locally Managed Decentralized Circular Economy principles,” Chin. J. Chem. Eng., vol. 27, iss. 7, pp. 1566-1571, Jul. 2019. https://doi.org/10.1016/j.cjche.2019.01.032 .

C. A. Joshi, and J. R. Seay, “Total generation and combustion emissions of plastic derived fuels: A trash to tank approach,” Environ. Prog. Sustain. Energy, vol. 39, iss. 5, Jan. 18. 2019. https://doi.org/10.1002/ep.13151 .

C. Joshi, J. Seay, and N. Banadda, “A Perspective on a Locally Managed Decentralized Circular Economy for Waste Plastic in Developing Countries,” Environ. Prog. Sustain. Energy, vol. 38, pp. 3-11, Dec. 2019. https://doi.org/.1002/ep.13086.

C. Joshi, S. Browning, and J. Seay, “Combating plastic waste via Trash to Tank,” Nat. Rev. Earth Environ., vol. 1, p. 142, Feb. 17. 2020. https://doi.org/10.1038/s43017-020-0032-3 .

А. П. Ранський, Органічна хімія і екологія. Теоретичні основи органічної хімії. Аліфатичні вуглеводні, навч. пос. Вінниця, Україна: ВНТУ, 2012.

P. T. Williams, and E. Slaney, “Analysis of products from the pyrolysis and liguefaction of single plastics and waste plastic mixtures,” Resources, Conservation & Recyclibg., vol. 51, iss. 4, pp. 754-769, Oct. 2007. https://doi.org/10.1016/j.resconrec.2006.12.002 .

P. Palmay, C. Haro, I. Huacho, D. Barzallo, and J. C. Bruno, “Production and analysis of the physicochemical properties of the pyrolytic oil obtained from pyrolysis of different thermoplastics and plastic mixtures,” Molecules, vol. 27, iss. 10, p. 3287, May 20. 2022. https://doi.org/10.3390/molecules27103287 .

D. S. Achilias, C. Roupakias, P. Megalokonomosa, A. A. Lappas, and E. V. Antonakou, “Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP) ,” J. Hazard. Mater., vol. 149, iss. 3, pp. 536-542, Nov. 19, 2007. https://doi.org/10.1016/j.jhazmat.2007.06.076 .

E. T. Aisien, I. C. Otuya, and F. A. Aisien, “Thermal and catalytic pyrolysis of waste polypropylene plastic using spent FCC catalyst,” Environ. Technol. Innov., vol. 22, pp. 101455, May. 2021. https://doi.org/10.1016/j.eti.2021.101455 .

J. M. A. Torres, M. L. M. Constante, and E. O. P. Borja, “Evaluación de la pirólisis térmica de aceite vegetal de desecho en un reactor batch,” Revista Politécnica, vol. 33, no. 1, Feb. 1. 2014. [Electronic resource]. Available: https://revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/137 .

A. Marcilla, J. C. García-Quesada, S. Sánchez, and R. Ruiz, “Study of the catalytic pyrolysis behaviour of polyethylene-polypropylene mixtures,” J. Anal. Appl. Pyrolysis., vol. 74, iss. 1-2, pp. 387-392, Aug. 2005. https://doi.org/10.1016/j.jaap.2004.10.005 .

R. Kuncser, M. Paraschiv, M. Tazeroyt, and I. Bellettere, “Liquid fuel recovery through pyrolysis of polyethylene waste,” Environmental Engineering and Management Journal, vol. 9, no. 10, pp. 1371-1374, Oct. 2010. https://doi.org/10.30638/eemj.2010.180 .

G. K. Roy, B. Kumar, and S. Jha, “Chromatographic study of the recovered gases from hydropyrolytic de-polymerization of LDPE, MDPE and HDPE mix type of waste polyethylene,” Appl. Petrochem Res., no. 6, pp, 65-72, Nov. 18. 2010. https://doi.org/10.1007/s13203-015-0138-6 .

D. Damayanti, and other, “Current Prospects for Plastic Waste Treatment”, Polymers, vol. 14, pp. 3133, Jul. 31, 2022. https://doi.org/10.3390/polym14153133 .

Downloads

Abstract views: 193

Published

2023-05-04

How to Cite

[1]
A. P. Ranskyi and B. V. Korinenko, “Alternative Energy: Obtaining Synthetic Oil During the Pyrolysis Processing of Polypropylene Waste”, Вісник ВПІ, no. 2, pp. 6–14, May 2023.

Issue

Section

ECOLOGY AND ENVIRONMENTAL SECURITY

Metrics

Downloads

Download data is not yet available.