Experimental Investigations and Simulation of Soil Temperature Distribution at a Depth Above the Neutral Layer
DOI:
https://doi.org/10.31649/1997-9266-2023-168-3-34-46Keywords:
renewable energy sources, geothermal energy, soil heat, neutral layer, geothermal heat pump systemAbstract
In the process of solving the problems of soil accumulation and extraction of heat from the near-surface layers of the Earth, there is a need to obtain information on the depth of annual temperature changes in the soil, which determines the layer of the earth’s surface that actively interacts with the near-Earth atmosphere. In the cold season, the temperature in it drops, and in the warm season it rises. It is known that the efficiency of a heat pump system depends both on the temperature difference at the outlet of the heat pump condenser and the inlet to its evaporator, and on the temperature stability of the heat source. The temperature at the inlet to the evaporator of the heat pump is determined by the temperature of the ground at the location of the heat collector. The greatest efficiency is achieved by heat pump systems with collectors installed below the neutral layer — the temperature of which is constant and equal to the average annual temperature of the soil in the area.
At the geothermal test site of the Institute of Renewable Energy Sources of the National Academy of Sciences of Ukraine, experimental studies of soil temperature changes at the installation site of vertical heat exchangers (collectors) were carried out. The research methodology is described. The characteristics of the measuring equipment installed on the experimental setup and the software used for archiving and visualization of the data obtained during the research are given. The depth of the neutral layer was determined and the obtained dependences of temperature change on depth were substantiated, taking into account the ambient temperature and other factors of exogenous impact.
Mathematical model is presented that makes it possible to determine the soil temperature T(z, t) depending on the depth z ≥ 0 and time t ≥ 0, provided that the change in the temperature of the soil surface or outdoor air over time is given, taking into account the assumption that the soil temperature does not depend on the coordinates (x, y) and the thermophysical properties of the soil do not change with the coordinates (x, y, z) over time. Based on the mathematical model, calculated data were obtained and graphs of the dependence of T(z, t) on depth per day and per year were plotted. The depth of the neutral layer is determined. Experimentally obtained as a result of research work on the thermal regime of the soil at the geothermal test site of the Institute of Renewable Energy of the National Academy of Sciences of Ukraine, correlate with the results obtained during mathematical modelling. The depth of annual temperature changes in the soil h, which determines the layer of the earth’s surface that actively interacts with the Earth’s atmosphere, in both cases is at around 15 m.
In the course of the study, the patterns of seasonal temperature changes in the upper layers of the Earth were confirmed. The analysis of the data obtained made it possible to conclude that it is necessary to take into account changes in soil temperatures during the year when solving the problems of accumulation and extraction of heat by geothermal heat pump systems. The obtained theoretical and practical results make it possible to improve the construction of geothermal systems. There are prospects for further studies of the influence of geological, hydrogeological morphological and anthropogenic conditions on the temperature deviation below the neutral layer and their influence on the efficiency of geothermal heat pump systems.
References
М. К. Безродний, І. І. Пуховий, і Д. С. Кутра, Теплові насоси та їх використання, навч. посіб. Київ, Україна: НТУУ «КПІ», 2013, 312 с.
А. А. Долінський, і Б. Х. Драганов, «Теплові насоси у системі теплопостачання будівель,» Промислова теплотехніка, т. 30, № 6, с. 71-83, 2008.
С. О. Кудря, Відновлювані джерела енергії. ІВЕ НАН України. Київ, Україна. 2020, 354 с.
Ю. П. Морозов, Д. М. Чалаєв, Н. В. Ніколаєвська, і М. П. Добровольський, «Оцінка ефективності використання теплового потенціалу довкілля та верхніх шарів землі України,» Відновлювана енергетика, № 4 (63), с. 80-88, 2019. https://doi.org/10.36296/1819-8058.2020.4(63).80-88 .
Ke Zhu, Philipp Blum, Grant, Klaus-Dieter Balke, and Peter Bayer, “The geothermal potential of urban heat islands,” Environ. Res. Lett., no. 5, pp. 1-6, 2010. http://Ferguson dx.doi.org/10.1088/1748-9326/6/1/019501 .
Ю. П. Морозов, А. А. Барило, Д. М. Чалаєв, і М. П. Добровольський, «Енергетична ефективність використання перших від поверхні водоносних горизонтів для тепло- і хладопостачання,» Відновлювана енергетика, № 2, с. 70-78, 2019. https://doi.org/10.36296/1819-8058.2019.2(57).70-78 .
O. V. Zurian, “Comparison of efficiency of geothermal and hydrothermal energy systems,” XIX International Multidisciplinary Scientific GeoConference SGEM. Renewable Energy Sources and Clean Tech. Varna. Bulgaria, 2019, с. 83-90. https://doi.org/10.5593/sgem2019/4.1/S17.011 .
Е. С. Малкін, i Є. О. Кулінко, «Перспективи та аспекти застосування систем теплохолодопостачання, які використовують приповерхневі шари води в якості теплового акумулятора,» Вентиляція, освітлення та теплогазопостачання, № 17, с. 63-69, 2014.
O. I. Denisov, “Comparative energy analysis of heat pumps and traditional heating systems,” Tehnicheskaya teplofizika i promyishlennaya teploenergetika. Ukraine. vol. 2, pp 22-34, 2010.
О. В. Зур’ян, і В. Г. Олійніченко, «Гідротермальна система отримання теплової енергії, фізичні процеси, ефективність,» Вісник Вінницького політехнічного інституту, № 4, с. 40-46, 2021. https://doi.org/10.31649/1997-9266-2021-157-4-40-46 .
Ю. П. Морозов, i А. С. Жохін, «Теплообмін при русі геотермального теплоносія у свердловині,» Відновлювана енергетика, № 4 (71), с. 83-89, 2023. https://doi.org/10.36296/1819-8058.2022.4(71).83-89 .
Olga Kordas, and Eugene Nikiforovich, “A phenomenological theory of steady-state vertical geothermal systems: A novel approach https,” Energy, no. 175, pp. 23-35, 2019 https://doi.org/10.1016/j.energy.2019.03.030 .
S. Yoon, et all, “Evaluation of stainless steel pipe performance as a ground heat exchanger in ground-source heat-pump system,” Energy, 2016; 113:328e37. https://doi.org/10.1016/j.energy.2016.07.057 .
I. Stylianou, G. Florides, S. Tassou, E. Tsiolakis, and P. Christodoulides, “Methodology for estimating the ground heat absorption rate of Ground Heat Exchangers,” Energy, 2017;127:258e70. https://doi.org/10.1016/j.energy.2017.03.070 .
А. Пуди, А. Прокопенко, Неоднорідні крайові задачі теплопровідності. Харків, Україна: ХНПУ, 2013, 226 с.
X. Liang, E. Wood, and D. Letenmaier, “Modeling ground heat flux in land surface parameterization schemes,” Journal of Geophysical Research, vol. 104, pp. 9581-9600.
В. Бондаренко, Рівняння математичної фізики. Київ, Україна: НТУУ «КПІ ім. І. Сікорського», 2018,100 с.
Downloads
-
PDF (Українська)
Downloads: 114
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).