Some Aspects of the Classification of Technological Methods for Creating Working Surfaces of Machine Parts

Authors

  • S. V. Kovalevskyy Donbass State Engineering Academy, Kramatorsk–Ternopil
  • N. S. Semichasnova Vinnytsia National Technical University
  • P. A. Kuzmenko Vinnytsia National Technical University

DOI:

https://doi.org/10.31649/1997-9266-2025-179-2-179-186

Keywords:

functional working surfaces, intelligent classification, neural network models, systems analysis, genetic algorithms, multidimensional parametric space, CAD/CAM/CAE integration, experimental validation, surface layer formation, surface microgeometry, adaptive self‑tuning, manufacturing process optimization

Abstract

The paper presents a fundamentally novel approach to the classification of technological methods for forming functional working surfaces of machine parts, based on the integration of neural network models with systems analysis. The relevance of the study is stipulated by the increasing requirements to the operational properties of the surface layer—wear resistance, corrosion resistance, contact stiffness, and so on—which necessitate the development of highly adaptive intelligent systems, enabling to select automatically optimal technological methods, taking into account diverse morphological, physical‑mechanical and structural factors. The aim of this work was to develop a multilevel methodology for classifying technological processes of surface layer formation using various types of neural networks and the concept of a multidimensional parametric space. Within this methodology, each technological method is formalized as a parameter vector encompassing the process’s energy characteristics, its influence on surface microgeometry, physical‑mechanical properties, changes in structural‑phase state and techno‑economic indicators. This approach provides a clear, structured representation of the interrelationships between the characteristics of technological methods and their operational outcomes. For validation, representative parts—shafts, gears, bearing rings, and housing components — were selected, and a comparative analysis was conducted of the system recommendations, expert assessments, and simple criterion‑based models. The results showed that the accuracy of method selection in the developed system increased by 27…34 % compared to traditional approaches; wear intensity decreased by 18…42 %; and corrosion resistance of the surfaces improved by 15…35 %. Moreover, the classification speed did not exceed 1.2 s, which proved to be significantly shorter than the execution time of analogous systems based on expert rules and statistical methods. One of the key advantages is the integration with CAD/CAM/CAE environments, which enables the prediction of operational properties during the design stage. The high adaptability of the system allows for prompt accommodation of new technological solutions and changing production conditions. Thus, the proposed intelligent classification system for technological methods of forming functional surfaces represents an effective tool for automating the selection of optimal technological solutions, contributes to improving the quality and reliability of mechanical engineering products, and opens prospects for further scientific research and practical industrial implementation.

Author Biographies

S. V. Kovalevskyy, Donbass State Engineering Academy, Kramatorsk–Ternopil

Dr. Sc. (Eng.), Professor, Head of the Chair of Innovative Technologies and Management

N. S. Semichasnova, Vinnytsia National Technical University

Senior Lecturer of the Chair of Technologies and Automation of Mechanical Engineering

P. A. Kuzmenko, Vinnytsia National Technical University

Student of the Department of Mechanical Engineering and Transport

References

H. Linke, J. Börner, and R. Heß, “Load Capacity and Running Performance of External and Internal Gearing,” Cylindrical Gears, Ed. by H. Linke, J. Börner, R. Heß. Munich: Hanser, 2016. pp. 177-457. ISBN 978-1-56990-489-3. https://doi.org/10.3139/9781569904909.006 .

A. Vereschaka, M. Volosova, N. Sitnikov, N. Andreev, F. Milovich, and J. Bublikov, “Filtered cathodic vacuum arc deposition (FCVAD) technology as method for creation of nanostructured multicomponent modifying coatings for wide application range,” Procedia CIRP, vol. 95, pp. 999-1003, 2020. https://doi.org/10.1016/j.procir.2020.01.201 .

J. Taheri Kahnamouei, and M. Moallem, “Advancements in control systems and integration of artificial intelligence in welding robots: A review,” Ocean Engineering, vol. 312, pp. 3. 2024. Article 119294. ISSN 0029-8018. https://doi.org/10.1016/j.oceaneng.2024.119294 .

S. Valizadeh Sotubadi, S. S. Pallissery, and V. Nguyen, “Multi-Modal Explainable Artificial Intelligence for neural network-based tool wear detection in machining,” Engineering Applications of Artificial Intelligence, vol. 144. 2025. Art. 110141. https://doi.org/10.1016/j.engappai.2025.110141 .

K. Qian, L. Zou, Z. Wang, and W. Wang, “Metallic surface defect recognition network based on global feature aggregation and dual context decoupled head,” Applied Soft Computing. vol. 158, 2024. Article 111589. https://doi.org/10.1016/j.asoc.2024.111589 .

Yang Huguang, Zheng Han, and Zhang Taohong, “A review of artificial intelligent methods for machined surface roughness prediction,” Tribology International, vol. 199, 2024. Article 109935. https://doi.org/10.1016/j.triboint.2024.109935 .

С. Ковалевський, «Деякі аспекти застосування штучного інтелекту для відновлення та розвитку України,» Штучний інтелект, № 3, с. 117-125, 2023. http://jnas.nbuv.gov.ua/article/UJRN-0001445551 .

S. Kovalevskyy, “Intelligent control systems for mechanical engineering technology tasks,” Штучний інтелект. Фізико-математичні та технічні науки, міжнар. наук-техн. журнал., № 4 (101), с. 218-227, 2024. https://doi.org/10.15407/jai2024.04.218 .

С. Ковалевський, Д. Сидюк, і О. Ковалевська, «Аспекти впровадження штучного інтелекту в технологічне забезпечення життєвого циклу виробів машинобудування,» Обробка матеріалів тиском, № 1(53), с. 109-115, 2024. https://doi.org/10.37142/2076-2151/2024-1(53)109 .

С. Ковалевський, О. Ковалевська, і Д. Сидюк, «Створення інноваційних виробничих систем машиноремонтного спрямування,» Галицький економічний вісник, т. 86, № 1, с. 115-125, 2024. https://doi.org/10.33108/galicianvisnyk_tntu2024.01.115 .

Downloads

Abstract views: 8

Published

2025-04-25

How to Cite

[1]
S. V. Kovalevskyy, N. S. Semichasnova, and . P. A. Kuzmenko, “Some Aspects of the Classification of Technological Methods for Creating Working Surfaces of Machine Parts”, Вісник ВПІ, no. 2, pp. 179–186, Apr. 2025.

Issue

Section

Mechanical engineering and transport

Metrics

Downloads

Download data is not yet available.