Controller of Heat Point Automation with Microclimate Parameter Control Subsystems under Hybrid Power Supply Conditions in a Greenhouse Complex
DOI:
https://doi.org/10.31649/1997-9266-2025-180-3-37-46Keywords:
energy efficiency, power supply, renewable energy, automated control systemAbstract
This paper focuses on improving the energy efficiency of greenhouse farming in the context of modern challenges related to decarbonization and the implementation of renewable energy sources. The study examines technologies for intelligent greenhouse microclimate control, including sensor systems, automated control algorithms, and hybrid power supply schemes based on solar energy. The authors propose innovative solutions to enhance the energy autonomy of greenhouse complexes, which contribute to reducing operational costs and ensuring the resilience of agricultural production. Special attention is paid to the development of hybrid power supply systems that combine conventional grid sources with renewable energy (solar panels). The proposed model allows the sale of surplus electricity to the grid, further reducing operational expenses and increasing the financial efficiency of the project. The study explores the energy autonomy and reliability of the system by integrating different power sources. Generalized structural diagram of the system is presented, incorporating key energy supply and microclimate management units. Detailed description of the automation controller functional scheme is provided, which ensures efficient energy distribution, microclimate stability, and minimizes human intervention. The analysis of the energy consumption of key greenhouse systems (heating, cooling, and lighting) under various microclimate control methods was conducted. The results indicate that the introduction of intelligent regulation systems significantly reduces energy consumption: by 30…40 % when using smart regulation algorithms; by 50…60 % with the implementation of comprehensive IoT solutions based on neural networks and genetic algorithms. The proposed microclimate control subsystem includes sensor blocks, a microcontroller module, actuator control units, and signal processing and conversion modules. A detailed description of each functional component, its role, and interactions is provided. The research also includes the economic analysis of the payback period for the proposed solutions. It was determined that transitioning from traditional management methods to intelligent and IoT-based systems can reduce electricity costs by up to 60 % and ensure a payback period within 0.3…1.5 years, depending on implementation complexity. The results of this study can be used to modernize greenhouse complexes, optimize energy consumption in the agricultural sector, and promote the sustainable development of greenhouse farming.
References
M. Taki, A. Rohani, and M. Rahmati-Joneidabad, “Solar thermal simulation and applications in greenhouse,” Information Processing in Agriculture, vol. 5, iss. 1, pp. 83-113, 2018. https://doi.org/10.1016/j.inpa.2017.10.003 .
Звіт UNDP про міжнародні добровільні та обов’язкові вуглецеві ринки з особливим акцентом на механізми, які застосовуються у випадку низьковуглецевого сільського господарства та потенційні можливості для українських розробників. [Електронний ресурс]. Режим доступу: https://www.undp.org/sites/g/files/zskgke326/files/2022-11/FINAL %20REPORT %20UNDP %20LH %20CARBON %20FARMING %20UKR.pdf .
Резолюція Генеральної Асамблеї ООН від 25 вересня 2015 року «Перетворення нашого світу: Порядок денний в області сталого розвитку на період до 2030 року». [Електронний ресурс]. Режим доступу: https://www.un.org/sustainabledevelopment/sustainable-development-goals/ .
Special report. Carbon farming: Europe’s new trend? Euractiv. Climate-smart agriculture. [Electronic resource]. Available: http://climate-adapt.eea.europa.eu/metadata/publications/climate-smart-agriculture .
Liping Wang, and Emmanuel Iddio, “Energy performance evaluation and modeling for an indoor farming facility,” Sustainable Energy Technologies and Assessments, vol. 52, part C, 2022. https://doi.org/10.1016/j.seta.2022.102240 .
E. Iddio, L. Wang, Y. Thomas, G. McMorrow, and A. Denzer, “Energy efficient operation and modeling for greenhouses: A literature review,” Renewable and Sustainable Energy Reviews, vol. 117, 2020. https://doi.org/10.1016/j.rser.2019.109480.
Y. Hashimoto, H. Murase, T. Morimoto, and T. Torii, “Intelligent systems for agriculture in Japan,” IEEE Control Systems, no. 21 (5), pp. 71-85, 2001. https://doi.org/10.1109/37.954520 .
O. Mirabella, and M. Brischetto, “A Hybrid Wired/Wireless Networking Infrastructure for Greenhouse Management,” IEEE Transactions on Instrument and Measurement, no. 60 (2), pp. 398-407, 2011. https://doi.org/10.1109/TIM.2010.2084250 .
Shahad Al-Yousif, N. F. Zainuddin, and B. B. Hamzah, “Intelligent temperature control system at greenhouse,” International Journal of Applied Engineering Research, no. 12, pp. 1811-1814, 2017.
Y. Jiaqiang, J. Yulong, and G. Jian, “An Intelligent Greenhouse Control System,” Telkomnika, vol. 11, no. 8. pp. 4627-4632, 2013. https://doi.org/10.11591/telkomnika.v11i8.3088 .
Л. Г. Віхрова, В. М. Калич, іТ. А. Прокопенко, «Адаптивна автоматизована система збору та контролю основних параметрів мікроклімату в теплиці,» Збірник наукових праць Кіровоградського національного технічного університету. Техніка в сільськогосподарському виробництві, галузеве машинобудування, автоматизація, вип. 29, с. 168-172, 2016.
Т. О. Прокопенко, «Інтелектуальна система керування температурно-вологісним режимом у теплиці,» Науковий вісник Національного університету біоресурсів і природокористування України. Серія: Техніка та енергетика АПК, вип. 209 (1), с. 140-147, 2015.
М. О. Тонюк, «Економічна ефективність впровадження пасивних сонячних систем для створення необхідного мікроклімату в теплицях,» Агроекологічний журнал, № 4, с. 163-172, 2020. https://doi.org/10.33730/2077-4893.4.2020.219457 .
V. P. Sethi, K. Sumathy, Chiwon Lee, and D.S. Pal, “Thermal modeling aspects of solar greenhouse microclimate control: A review on heating technologies,” Solar Energy, vol. 96, pp. 56-82, 2013. https://doi.org/10.1016/j. solener.2013.06.034 .
Jamel, Riahi and Vergura, Silvano, “Intelligent Control of the Microclimate of an Agricultural Greenhouse Powered by a Supporting PV System,” Applied Sciences, 2020. https://doi.org/10.3390/app10041350 .
V. Syrotiuk, at al., “A hybrid system with intelligent control for the processes of resource and energy supply of a greenhouse complex with application of energy renewable sources,” Przegląd elektrotechniczny, r. 96 nr 7, 2020. https://doi.org/10.15199/48.2020.07.28 .
I. Trunina, K. Pryakhina, and S. Yakymets, “Research on the Development of Renewable Energy Sources in the World Due to the War in Ukraine,” IEEE International Conference on Modern Electrical and Energy Systems (MEES), 2022 https://doi.org/10.1109/MEES58014.2022.10005696 .
А. Гладир, В. Ноженко, і С. Якимець, «Лабораторний практикум із вивчення обладнання альтернативних джерел енергії,» Вісник Кременчуцького національного університету імені Михайла Остроградського, вип. 1 (144), с. 215-223, 2024. https://doi.org/10.32782/1995-0519.2024.1.29 .
J. Oliveira, J. Boaventura-Cunha, and P. Oliveira, “Automation and control in greenhouses: state-of-the-art and future trends,” Lecture Notes in Electrical Engineering, pp. 597-606, 2016.
Downloads
-
pdf (Українська)
Downloads: 5
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).