Research of Entropy Estimates of Diagnostic Characteristics of Technological Systems Based on Probability Distributions
DOI:
https://doi.org/10.31649/1997-9266-2025-180-3-168-177Keywords:
Shannon entropy, diagnostics of technological systems, statistical distributions, magneto-resonance processing, spectral entropy, informational uncertaintyAbstract
In the study, a combination of theoretical fundamentals and practical experiments is carried out to substantiate a universal information-based approach to the diagnosis of technological systems. At the outset of the study, the authors invoke the fundamental concepts of Shannon entropy as a measure of uncertainty, explaining its role in the quantitative assessment of the informational richness of diagnostic signals. The central premise is that traditional statistical metrics — such as the mean or variance — do not always allow for a comprehensive description of complex structural changes in materials, especially under conditions of magneto-resonant processing. It is for this reason that an approach was developed enabling the comparison of different probabilistic models on a single informational scale. The methodology is presented in detail, involving the construction of a unified, normalized parameter space: all distributions are aligned according to common characteristics of mean value and dispersion, ensuring an impartial comparison. Using five materials — steel, copper, duralumin, textolite, and acrylic glass — as examples, the authors model spectral responses to broadband vibrational excitation in a constant magnetic field. For each sample, amplitude-frequency characteristics are obtained, which make it possible to identify the unique “spectral fingerprints” of the materials. The high degree of order in the steel response, manifested by a pronounced resonance peak, contrasts with the nearly uniform spectrum of the dielectrics, indicating different interaction mechanisms between broadband vibrations and the magnetic field in these materials. The results demonstrate that spectral entropy is a sensitive indicator of structural changes: a decrease in its value correlates with an increase in material ordering, whereas an elevated entropy indicates an even distribution of energy across frequencies. Based on these findings, practical recommendations are formulated for selecting optimal statistical models for different classes of materials: for example, for ferromagnetic metals it is advisable to use distributions with heavier tails, while for non-metallic materials models with maximal informational uncertainty are preferred. The proposed approach opens new prospects for information-oriented diagnostics and non-destructive testing, contributing to enhanced reliability and efficiency of technological processes in mechanical engineering and materials science.
References
Y. Xu, S. Kohtz, J. Boakye, P. Gardoni, and P. Wang, “Physics-informed machine learning for reliability and systems safety applications,” State of the art and challenges. Reliability Engineering & System Safety, vol. 230, 2023. Art. 108900. https://doi.org/10.1016/j.ress.2022.108900 .
Ferial ElRobrini, Syed Muhammad Salman Bukhari, Muhammad Hamza Zafar, Nedaa Al-Tawalbeh, Naureen Akhtar, and Filippo Sanfilippo, “Federated learning and non-federated learning based power forecasting of photovoltaic/wind power energy systems,” A systematic review. Energy and AI, vol. 18, 2024. Article 100438. ISSN 2666-5468. https://doi.org/10.1016/j.egyai.2024.100438 .
Chen Zheyi, et al., “Evolution and Prospects of Foundation Models: From Large Language Models to Large Multimodal Models,” Computers, Materials and Continua, vol. 80, Iss. 2. pp. 1753-1808, 2024. ISSN 1546-2218. https://doi.org/10.32604/cmc.2024.052618 .
С. І. Перевозніков, Н. О. Біліченко, i В. С. Озеранський, Теорія інформації та кодування. Вінниця, Україна: ВНТУ, 2017, 82 с.
В. П. Майданюк, О. Н. Романюк, i С. Є. Тужанський, Основи теорії інформації та кодування, електр. навч. посіб. комбінованого використання. Вінниця, Україна: ВНТУ, 2022, 133 с.
D. C. Christie, “Efficient estimation of directional wave buoy spectra using a reformulated Maximum Shannon Entropy Method: Analysis and comparisons for coastal wave datasets,” Applied Ocean Research, vol. 142, 2024. Article 103830. https://doi.org/10.1016/j.apor.2023.103830. ISSN 0141-1187 .
W. Salkeld, “Small ball probabilities, metric entropy and Gaussian rough paths,” Journal of Mathematical Analysis and Applications, vol. 506, Iss. 2, 2022. Article 125697. https://doi.org/10.1016/j.jmaa.2021.125697 .
E. Suhir, “Double-exponential-probability-distribution-function and it’s applications in some critical aerospace safety problems,” Perspective and brief review. Microelectronics Reliability, vol. 159, 2024. Article 115439. https://doi.org/10.1016/j.microrel.2024.115439 .
N. A. Spencer, and J. W. Miller, “Strong uniform laws of large numbers for bootstrap means and other randomly weighted sums,” Statistics & Probability Letters, vol. 211, 2024. Article 110144. https://doi.org/10.1016/j.spl.2024.110144 .
M. Kreer, A. Kizilersu, and A. W. Thomas “When is the discrete Weibull distribution infinitely divisible?” Statistics & Probability Letters, vol. 215, 2024. Art. 110238. https://doi.org/10.1016/j.spl.2024.110238 .
P. J. Forrester, “On the gamma difference distribution,” Statistics & Probability Letters, vol. 211. 2024. Art. 110136. https://doi.org/10.1016/j.spl.2024.110136.
R. Tomaschitz, “Multiply broken power-law densities as survival functions: An alternative to Pareto and lognormal fits,” Physica A: Statistical Mechanics and its Applications, vol. 541. 2020. Article 123188. https://doi.org/10.1016/j.physa.2019.123188 .
J. Krotz, M. R. Sweeney, C. W. Gable, J. D. Hyman, and J. M. Restrepo, “Variable resolution Poisson-disk sampling for meshing discrete fracture networks,” Journal of Computational and Applied Mathematics, vol. 407, 2022. Article 114094. ISSN 0377-0427. https://doi.org/10.1016/j.cam.2022.114094 .
С. В. Ковалевський, О. С. Ковалевська, i Ю. В. Лупа, «Підвищення експлуатаційних характеристик деталей машин на основі комбінованого впливу сильних магнітних полів,» Зб. наук. праць Дніпровського державного технічного університету. Технічні науки, вип. 2, с. 29-36, 2021.
S. Kovalevskyy, and O. Kovalevska, “New opportunities for processing materials in a strong magnetic fields,” Технічні науки та технології, науковий журнал, Національний університет «Чернігівська політехніка», № 4 (26), c. 7-14, 2021.
S. Kovalevskyy, and O. Kovalevska, “Identification and Technological Impact of Broadband Vibration on the Object,” Papers from the 3rd Grabchenko’s International Conference on Advanced Manufacturing Processes (InterPartner-2021), September 7-10, 2021, Odessa, Ukraine. ABCM Series on Mechanical Sciences and Engineering. Lecture Notes in Networks and Systems, pp. 78-87. https://doi.org/10.1007/978-3-030-91327-4_8 .
Downloads
-
pdf (Українська)
Downloads: 6
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).