Analysis of Vibrations of Overhead Power Lines During Ice Melting with Direct Current

Authors

  • V. V. Kuchanskyy National Academy of Sciences of Ukraine Institute of Electrodynamics
  • Ye. O. Zaitsev National Academy of Sciences of Ukraine Institute of Electrodynamics, Kyiv
  • O. M. Kovalenko Center for Information-analytical and Technical Support of Nuclear Power Facilities Monitoring of the National Academy of Sciences of Ukraine, Kyiv

DOI:

https://doi.org/10.31649/1997-9266-2025-179-2-81-90

Keywords:

ice formation, overhead power line, ice melting by direct current, vibration characteristics

Abstract

The article analyzes the relationship between the ice melting current, temperature distribution and vibration of overhead power line wires, which is based on the use of the series connection method to obtain the connection equation between the electrical and thermal energy released during the process of melting ice on wires with a direct current. Usually, in the case of calculating ice melting modes, the problem of choosing such a melting current value is solved, at which, under given meteorological conditions, ice will be removed in a given time. For a specific ice melting scheme, such a current remains practically unchanged for all weather conditions, therefore, there is always a fear that the current value in this scheme may be insufficient for successful ice melting under certain unfavorable, but possible ice wall thickness, wind speed and ambient temperature. The article, based on the refined model of ice melting, considers the method of determining the actual range of meteorological conditions under which, for a given current value, successful ice melting is ensured. Usually, in the case of calculating ice melting modes, the problem of choosing such a melting current value is solved, at which, under given meteorological conditions, the ice will melt in a given time. Such a formulation of the problem is suitable for overhead lines equipped with special ice melting installations with an adjustable current value. provided that the ice melting current in all weather conditions does not exceed the permissible value. For overhead lines that do not have such installations, the ice melting current is not regulated, its value must be chosen taking into account a number of restrictions (mechanical strength of wires, power supply capacity, ice melting power scheme, length of the ice melting zone, etc.). Experience in operating electric networks shows that ice-wind accidents on overhead lines are among the most severe, and can disrupt the power supply of large economic areas of the regions of Ukraine. The issue of preventing ice-wind accidents on overhead lines is also relevant for main electric networks. It should be noted the significant economic damage from ice-wind accidents on the Western electric power system in the autumn-winter periods: 2004—2005, 2010—2011 and 2012—2013.

Author Biographies

V. V. Kuchanskyy, National Academy of Sciences of Ukraine Institute of Electrodynamics

Cand. Sc. (Eng.), Senior Researcher, Head of the Department of Power-Supply Systems Optimization

Ye. O. Zaitsev, National Academy of Sciences of Ukraine Institute of Electrodynamics, Kyiv

Dr. Sc. (Eng.), Senior Researcher, Head of the Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment; Leading Researcher of the Center for Information-analytical and Technical Support of Nuclear Power Facilities Monitoring of the National Academy of Sciences of Ukraine

O. M. Kovalenko, Center for Information-analytical and Technical Support of Nuclear Power Facilities Monitoring of the National Academy of Sciences of Ukraine, Kyiv

Junior Researcher of the Department of Environmental Protection Technologies and Radia-tion Safety of Center for Information-analytical and Technical Support of Nuclear Power Facilities Monitoring of the National Academy of Sciences of Ukraine; Post-Graduate Student of the Chair of Public Administration Interregional Academy of Personnel Management

References

Zou Chenqiao, Peng Ping, Liu Yonggang, and Xu Hao, “Analysis of the Influence of Remanence on the Performance of Current Transformer Caused by DC Ice Melting of Transmission Lines,” Journal of Physics: Conference Series, no. 2503 (1), 2023.

Wen Zuopeng, Lou Wenjuan, and Jiang Xiong, “Galloping stability of a 3-DOF conductor model considering inertial coupling and anti-galloping mechanism of inertial mass,” Journal of Vibration Engineering, no. 35 (4), pp. 1029-1036, 2022.

S. S Shovkoplyas, A. I. Kryukov, A. Y. Kutuzov, and E. I. Satsuk, “Operation of Current Protection for the Zero Sequence of Overhead Electric Power Transmission Lines Taking the Circuit for Ice Melting on its Lightning-Protection Cables into Account,” Power Technology and Engineering, no. 56 (2), 2023.

Wen Zuopeng, and Liang Hong-chao, “Optimization for galloping wind speed control of ultra-high-voltage iced conductors with large span using TTMD,” Journal of Vibration Engineering, no. 34 (5), pp. 934-942, 2021.

«Енергетики зафіксували рекордну ожеледь на дротах ЛЕП,» UA.NEWS, 15 Січня 2024, [Електронний ресурс]. Режим доступу: https://ua.news/ua/ukraine/energetiki-zafiksuvali-rekordnu-ozheled-na-drotah-lep .

Louis M. Schellenberg, Thomas J. Newton, and Gary R., “Hunt On the rotation of melting ice disks, “ Journal Environmental Fluid Mechanics, no. 23 (2), 2023.

Zhu He, et al., “Dynamic response analysis of sub-conductor non-synchronous deicing during DC ice-melting of four-bundle conductor spacer system,” Journal of Vibration and Shock, no. 42 (1), pp. 282-291, 2023.

Zhu He, et al., “DC ice-melting operation of the ground wire based on the characteristic investigation of the thermal structure coupling effect,” Electric Power Systems Research, 218, 2023.

Zhu Gaojia, et al., “Finite formula temperature field calculation technology and its application in the analysis of permanent magnet motor,” [J] Proceedings of the CSEE, no. 37 (S1), pp. 152-161, 2017.

Yang Lei, et al., “Thermotactic habit of gas hydrate growth enables a fast transformation of melting ice,” Applied Energy, 331, 2023.

Wen Yi, et al., “Research on Risk Assessment and Suppression Measures for Ice-Shedding on 500 kV Compact Overhead Lines,” Energies, no. 15 (21), 2022.

Lou Wenjuan, et al., “Jump height of an iced transmission conductor considering joint action of ice-shedding and wind,” Cold Regions Science and Technology, 199, 2022.

Lou Wenjuan, Zhang Yuelong, and Huang Mingfeng, “Study on amplification factor of jump height of crescent-shaped iced transmission conductor following ice shedding under wind action,” Journal of Vibration and Shock, no. 41 (21), pp. 272-278, 2022.

Zhuang Wenbing, et al., “Estimation model of transmission line icing dynamic process based on micrometeorological monitoring,” Power System Protection and Control, no. 47 (14), pp. 87-94, 2019.

Meng Zhigao, “Study on DC ice melting process and model of optical fiber composite overhead ground line (OPGW),” Chongqing University, 2017.

Lu J, et al., “An Analysis of the Reliability of a New Dataset of Transmission Line Icing Thickness in Southern China,” Journal of Applied Meteorology and Climatology, no. 58 (2), 2019.

Jiazheng Lu, et al., “Low-Harmonic DC Ice-Melting Device Capable of Simultaneous Reactive Power Compensation,” Energies, no. 11, pp. 2-17, 2018.

Tang Rui, “Establishment of the dynamic model of de-icing of trans-mission line and its application in induced deicing,” Jiangsu: Nanjing University of Science and Technology, 2017.

Zhu He, Wang Gang, and Guo Xin, “Influences of ice crystal on aerodynamic characteristics of a 3D iced conductor,” Journal of Vibration and Shock, no. 40 (1), pp. 212-217, 2021.

Є. Зайцев, В. Кучанський, і І. Гунько, Підвищення експлуатаційної надійності та ефективності роботи електричних мереж та електроустаковання, моногр. Publishing House «European Scientific Platform», 2021, 156 р., [Електронний ресурс]. Режим доступу: https://doi.org/10.36074/penereme-monograph.2021 .

O. Zaitsev and V. V. Kuchanskyy, “Corona discharge problem in extra high voltage transmission line,” in Systems Decision and Control in Energy II, Springer, pp. 3-30, 2021.

V. Kuchanskyy, and I. O. Zaitsev, “Corona Discharge Power Losses Measurement Systems in Extra High Voltage Transmissions Lines,” in 2020 IEEE 7th International Conference on Energy Smart Systems (ESS), 2020, pp. 48-53. https://doi.org/10.1109/ESS50319.2020.9160088 .

I. Zaitsev, A. Levytskyi, and V. Bereznychenko “Hybrid diagnostics systems for power generators faults: systems design principle and shaft run-out sensors,” in “Power systems research and operation: Selected problems,” Kyrylenko O., Zharkin A. and other, Eds., Springer, 2021, pp. 71-98. https://doi.org/10.1007/978-3-030-82926-1_4 .

Є. Зайцев, В. Березниченко, С. Закусило, і А. Антоненко, «SMART засоби визначення аварійних станів в розподільних електричних мережах міст,» Таврійський науковий вісник, серія: Технічні науки, № 5, с. 3-12, 2022. https://doi.org/10.32851/tnv-tech.2022.5.1 .

С. А. Закусило, і Є. О. Зайцев, «Використання технології LoRaWAN в системах інформаційного обміну засобів контролю та діагностування енергетичного обладнання,» Сучасні методи, інформаційне, програмне та технічне забезпечення систем керування організаційно-технічними та технологічними комплексами, матер. X Міжнародної науково-технічної Internet-конференції, 24 листопада 2023., Київ, Україна: НУХТ, 2023, с. 183. [Електронний ресурс]. Режим доступу: https://nuft.edu.ua/naukova-diyalnist/naukovi-konferencii .

Downloads

Abstract views: 23

Published

2025-04-25

How to Cite

[1]
V. V. Kuchanskyy, Y. O. Zaitsev, and O. M. Kovalenko, “Analysis of Vibrations of Overhead Power Lines During Ice Melting with Direct Current”, Вісник ВПІ, no. 2, pp. 81–90, Apr. 2025.

Issue

Section

ENERGY GENERATION, ELECTRIC ENGINEERING AND ELECTROMECHANICS

Metrics

Downloads

Download data is not yet available.