Adaptive Noise Compensation Method in Intraskopic Imaging Based on Wavelet Analysis and Local Contrast Filtering

Authors

  • Е. B. Yavorska Ternopil Ivan Puluj National Technical University
  • I. O. Hryniuk Ternopil Ivan Puluj National Technical University

Keywords:

intraskopic imaging, image quality enhancement, adaptive filtering, wavelet decomposition, local contrast, CLAHE, SSIM, PSNR

Abstract

The article presents a novel method for enhancing the quality of intraskopic images, based on adaptive noise compensation through the combination of wavelet decomposition and local contrast filtering. The relevance of the problem is determined by the fact that modern medical imaging systems often produce images with low contrast, significant noise levels, uneven illumination, and motion artifacts, which complicates accurate diagnostic interpretation. The problem is formulated as an inverse signal restoration task. An algorithm for constructing a filtering sequence is proposed, which involves multilevel wavelet decomposition, adaptive processing of detail coefficients, and signal reconstruction, followed by the application of CLAHE, guided filtering, and bilateral smoothing. Simulation and experimental studies were carried out in MATLAB R2023a using publicly available medical datasets (Kvasir, HyperKvasir, EndoVis).

The results demonstrated that the method significantly improves PSNR and SSIM metrics, reduces NIQE and BRISQUE values, and preserves the textural informativeness of anatomical structures. Comparison with classical methods (histogram equalization, CLAHE, bilateral filtering) confirmed the higher efficiency of the proposed approach, which is particularly important for diagnostics in endoscopy, gastroscopy, and dental intraskopy. The obtained results highlight the advantages of the proposed method over baseline approaches in preserving textural information and enhancing local contrast.

The practical significance of the work lies in the possibility of integrating the method into real-time systems to improve diagnostic accuracy and minimize the risk of missed pathologies. The developed method opens up prospects for application in clinical practice, telemedicine, and decision-support systems.

Author Biographies

Е. B. Yavorska, Ternopil Ivan Puluj National Technical University

Cand. Sc. (Eng.), Associate Professor, Head of the Chair of Biotechnical Systems

I. O. Hryniuk, Ternopil Ivan Puluj National Technical University

 Post-Graduate Student of the Chair of Biotechnical Systems

References

F. Liu, et al., “Image Enhancement Techniques for Endoscopic Imaging: A Comprehensive Review,” IEEE Transactions on Medical Imaging, vol. 42, no. 1, pp. 112-130, 2023. https://doi.org/10.1109/TMI.2022.3211234 .

Y. Huang, et al., “Wavelet-Based Denoising for Low-Illumination Medical Images,” Biomedical Signal Processing and Control, vol. 72, pp. 103389, 2022. https://doi.org/10.1016/j.bspc.2021.103389 .

K. Zhang, et al., “Restoration of Medical Images via SwinIR Transformer,” in Proc. CVPR Workshops, 2021, pp. 123-132. [Electronic resource]. Available: https://arxiv.org/abs/2108.10257 .

S. Jain, and A. Kumar, “Comparative Study of CLAHE and Guided Filtering for Contrast Enhancement of Medical Images,” Computers in Biology and Medicine, vol. 141, pp. 105124, 2022. https://doi.org/10.1016/j.compbiomed.2021.105124 .

C. Li, et al., “CycleGAN-Based Endoscopic Image Enhancement for Improved Diagnostic Accuracy,” Medical Image Analysis, vol. 62, pp. 101710, 2020. https://doi.org/10.1016/j.media.2020.101710 .

E. Yavorska, O. Dozorska, and L. Dediv, “The Method of the Main Tone Detection in the Structure of Electromyographic Signals for the Task of Broken Human Communicative Function Compensation,” Visnyk NTUU KPI. Ser. Radiotekhnika Radioaparatobuduvannia, no. 81, pp. 56-64, 2020.

Y. Wang, et al., “Evaluation Metrics for Image Enhancement: A Survey,” IEEE Access, vol. 10, pp. 38152-38172, 2022. https://doi.org/10.1109/ACCESS.2022.3166308 .

G. Kaur, and R. Rani, “Fusion of Bilateral and Wavelet Filters for High-Quality Endoscopic Image Restoration,” Computer Methods and Programs in Biomedicine, vol. 229, pp. 107402, 2023. https://doi.org/10.1016/j.cmpb.2023.107402 .

О. В. Коменчук, і О. Б. Мокін, «Аналіз методів передоброблення панорамних стоматологічних рентгенівських знімків для задач сегментації зображень,» Вісник Вінницького політехнічного інституту, №. 6, с. 48-55, 2022. https://doi.org/10.31649/1997-9266-2023-170-5-41-49 .

О. В. Коменчук, «Адаптивні методи попереднього оброблення для підвищення точності сегментації стоматологічних рентгенівських знімків,» Інформаційні технології та комп’ютерна інженерія, №. 1, с. 23-31, 2023. https://doi.org/10.30837/2522-9818.2024.3.029 .

V. Abramova, S. Krivenko, V. Lukin, and O. Krylova, “Noise Properties Analysis of Dental Images,” Proc. Kharkiv National Medical University, pp. 24-28, 2019, [Electronic resource]. Available: https://repo.knmu.edu.ua/items/a077e359-3f20-46ef-93f5-c0562217ac78 .

N. Piontko, and M. Karpinski, “Segmentation of Partially Blurred Images Using Wavelet Transform,” Computer Data Systems and Networks, no. 7(77), pp. 145-152, 2013. [Electronic resource]. Available: https://science.lpnu.ua/uk/cds-archive/vsi-vypusky/nomer-777-2013/segmentation-partially-blurred-images-using-wavelet-transform .

В. Березюк, і Я. Соколовський, «Покращення медичних МРТ-зображень на підставі фрактальних операторів,» Комп’ютерні науки та інформаційні технології, т. 6, № 2, pp. 111-118, 2024. [Електронний ресурс]. Режим доступу: https://science.lpnu.ua/uk/cds/vsi-vypusky/volume-6-number-2-2024/pokrashchennya-medychnyh-mrt-zobrazhen-na-pidstavi-fraktalnyh .

Abstract views: 1

Published

2025-12-11

How to Cite

[1]
Yavorska Е. B. and I. O. . Hryniuk, “Adaptive Noise Compensation Method in Intraskopic Imaging Based on Wavelet Analysis and Local Contrast Filtering”, Вісник ВПІ, no. 5, pp. 83–88, Dec. 2025.

Issue

Section

Information technologies and computer sciences

Metrics

Downloads

Download data is not yet available.