Development of Models and Methods for Optimal Control of Project Systems Based On the Optimal Aggregation Methodology

Authors

  • T. M. Borovska Vinnytsia National Technical University
  • D. I. Hryshyn Vinnytsia National Technical University
  • I. S. Kolesnyk Vinnytsia National Technical University
  • V. A. Severilov Vinnytsia National Technical University

DOI:

https://doi.org/10.31649/1997-9266-2020-148-1-61-76

Keywords:

optimal aggregation, variational problem, optimal development, project system, monoproject

Abstract

There has been considered the management of project systems taking into account the life cycle of the product. A mathematical model and software for project systems has been developed. The software has modules to adjust the parameters of the mathematical model, enter data and analyze the results of the simulation. The main interpretation of the mathematical model is the complex of production, retail, logistics of components and final products and recycling systems. Technology systems can be in the states of design, construction, and production, modification of technologies and products of production. The purpose of the article is to develop mathematical models: individual production projects, taking into account demand, competition, technology renewal and production of products; Development of project system models with time management in mind.

The conceptual theoretical basis of development has been chosen: resource approach, methodology of optimal aggregation and solution of variation problems of optimal allocation of resources in the processes of operation and development of objects. An integrated mathematical model of "monoproject" has been developed, performing optimal aggregation and optimization of the development strategy. The result of calculations of the module is "monoproject"-matrix structures, similar to the records in databases — solving the problems of optimal operational and strategic management. The variation is solved for a one-dimensional optimal equivalent object followed by "disaggregation" - the distribution of the optimal strategy across all subsystems.

The result of using the "monoproject" software module is to remove the dimension problem in solving one-step and multi-step optimization problems. Specifically, it is the elimination of search engines and the possibility of parallel calculations. The following new scientific and practical results have been obtained: optimal management of the start and end of individual monoprojects; optimal management of market windows — moments of decommissioning of some products and the launch of new products; the development of new binary operators of optimal aggregation of elements of the system of projects – monoprojects. A simulation of the project test system has been performed.

Author Biographies

T. M. Borovska, Vinnytsia National Technical University

Dr. Sc. (Eng.), Professor, Professor of the Chair of Computer Control Systems

D. I. Hryshyn, Vinnytsia National Technical University

Post-Graduate Student of the Chair of Computer Control Systems

I. S. Kolesnyk, Vinnytsia National Technical University

Post-Graduate Student of the Chair of Computer Control System

V. A. Severilov, Vinnytsia National Technical University

канд. техн. наук, доцент

References

Т. М. Боровська, І. С. Колесник, та В. А. Северілов, Метод оптимального агрегування в оптимізаційних задачах. Вінниця, Україна: УНІВЕРСУМ-Вінниця, 2009, 229 с.

Т. М. Боровська, С. П. Бадьора, В. А. Северілов, та П. В. Северілов, Моделювання і оптимізація процесів розвитку виробничих систем з урахуванням використання зовнішніх ресурсів та ефектів освоєння. Вінниця, Україна: ВНТУ, 2009, 255 с.

Т. М. Боровська, Математичні моделі функціонування і розвитку виробничих систем на базі методології оптимального агрегування. Вінниця, Україна: ВНТУ, 2018, 308 с. ISBN 978–966–641–731–5.

Taisa M. Borovska et al., “Adaptive production control system based on optimal aggregation methods,” Proc. SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, 108086O (1 October 2018). https://doi.org/10.1117/12.2501520 .

J. Forrester, Fundamentals of cybernetics of the enterprise (Industrial dynamics): Translated from English, Moscow, USSR: Progress, 1971, 340 p.

V. I. Opoitsev, Equilibrium and stability in models of collective behavior. Moscow, USSR: World, 1977.

J. Forrester, Basics of Cybernetics enterprises (Urban Dynamics). Moscow, USSR: Progress, 1971.

W. Leontiev, “Theoretical assumptions and nonobservable facts,” The American economic review, no. 9 (4), pp. 1-7, December,1970.

R. Bellman, I. Gliksberg, and О. Gross, Certain problems of mathematical control theory. Moscow, USSR: Publishing House of Foreign Literature, 1962, 233 p.

Bruno G. Rüttimann, Introduction to Modern Manufacturing Theory. Zürich, Switzerland: Springer International Publishing AG, 2018, 149 p. https://doi.org/10.1007/978-3-319-58601-4.

N. J. Nersessian, and S. Chandrasekharan, “Hybrid analogies in conceptual innovation in science,” Cognitive Systems Research, no. 10(3), pp. 178-188, 2009. https://doi.org/10.1016/j.cogsys.2008.09.009.

Т. М. Боровська, В. А. Северілов, С. П. Бадьора, та І. С. Колесник, Моделювання задач управління інвестиціями. Вінниця, Україна: ВНТУ, 2009, 178 с.

М. В. Васильська, І. С. Колесник, та В. А. Северілов, «Моделі-предіктори: проблеми розробки і адекватності,» Вісник Вінницького політехнічного інституту, № 4, с. 114-121, 2011.

Р. Беллман, и Р. Калаба, Динамическое программирование и современная теория управления. М., Россия: Наука, 1969, 131 с.

М. Пешель, Моделирование сигналов и систем. М., Россия: Мир, 1981, 302 с.

М. Месарович, Д. Мако, и И. Такахара, Теория иерархических многоуровневых систем. М., Россия: Мир, 1973, 344 с.

R. Fagin, R. Kumar, and D. Sivakumar, “Efficient similarity search and classification via rank aggregation,” Proceedings of the 2003 ACM SIGMOD international Conference on Management of Data (San Diego, California). SIGMOD ‘03. ACM Press, New York, NY, pp. 301-312, 2003. https://doi.org/10.1145/872794.872795.

P. V. Severilov., Т. N. Borovska, Yu. N. Dmytryk, and E. P. Khomyn, “Modeling and optimization of agrarian systems with waste recycling in bioreactors,” Nauka i studia (Poland), № 16 (126), pp. 42-50, 2014. ISSN 1561-6894.

Т. Н. Боровская, И. С. Колесник, В. А. Северилов, и И. В. Шульган, “Оптимальное агрегирование интегрированных систем "производство-развитие,” Інформаційні технології та комп’ютерна інженерія, № 2 (30), с. 18-28, 2014. ISSN 1999-9941.

Т. Н. Боровська, «Оптимальне агрегування виробничих систем з параметричними зв’язками,» Східно-Європейський журнал передових технологій, т. 4, № 11(70), с. 9-19. 2014. https://doi.org/10.15587/1729-4061.2014.26306.

Т. М. Боровська, І. С. Колесник, В. А. Северілов, та П. В. Северілов, «Моделі оптимального інноваційного розвитку виробничих систем,» Східно-Європейський журнал передових технологій: Математичне та інформаційне забезпечення комп’ютерно-інтегрованих систем управління, т. 5, № 2 (71), с. 42-50, 2014. https://doi.org/10.15587/1729-4061.2014.28030.

James Pollock, Jon Coffman, Sa V. Ho, and Suzanne S. Farid, “Integrated Continuous Bioprocessing: Economic, Operational, and Environmental Feasibility for Clinical and Commercial Antibody Manufacture. Biotechnol. Prog.,” The Global Houm of Chemical Engineers, vol. 33, no. 4, 2017, https://doi.org/10.1002/btpr.2492.

Simone Brethauer and Michael Hanspeter Studer, “Consolidated bioprocessing of lignocellulose by a microbial consortium. Energy Environ. Sci.,” The Royal Society of Chemistry, no. 7, pp. 1446–1453. 2014. https://doi.org/10.1039/c3ee41753k

Downloads

Abstract views: 220

Published

2020-02-27

How to Cite

[1]
T. M. Borovska, D. I. Hryshyn, I. S. Kolesnyk, and V. A. Severilov, “Development of Models and Methods for Optimal Control of Project Systems Based On the Optimal Aggregation Methodology”, Вісник ВПІ, no. 1, pp. 61–76, Feb. 2020.

Issue

Section

Information technologies and computer sciences

Metrics

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >>