Increasing the Quality of Metal-Cutting Tools Operating under Radiation Exposure Conditions
DOI:
https://doi.org/10.31649/1997-9266-2025-179-2-157-163Keywords:
technology, metal-cutting tool, nuclear power plant, microhardness, roughness, continuity, environmental safetyAbstract
The paper presents the results of investigation of a new technology for increasing the resistance of metal-cutting tools (MCT) operating at nuclear power plants (NPPs) under radiation exposure conditions. The technology consists in applying the Composite Electrochemical Coating (CEC) composition of ESARb + ESA (1M + Mo + EG-4). The analysis of literary sources devoted to this subject has shown that there is a shortage of two vital ingredients of hard alloy tools for the EU industry, namely, tungsten and cobalt, which are included into the group of the fourteen (14) most important raw materials (CRM). There is also an increase in the use of the MCT made of high-speed steels with wear-resistant coatings free of CRM. The authors emphasize that when using the MCT in the NPP system, the elements, which become a source of dangerous long-lived isotopes if irradiated, should be avoided. Primarily, this concerns cobalt. Therefore, the purpose of the paper was to improve the quality of the MCT for operation under radiation exposure conditions by analyzing and synthesizing existing analogues, industry experience and recommendations in domestic and foreign literature due to application of the electrospark coatings that do not contain dangerous long-lived isotopes. Owing to the use of the proposed technology for applying the protective CECs to the MCT working surfaces, the microhardness and the continuity of the formed surface layers increase, respectively, to 12100 MPa and 100 %, and the roughness, Ra, decreases to 0.6 μm. The comparative tests have established that due to application of the CEC composition of ESARb + ESA (1M + Mo + EG-4) to the working surfaces of steel P6M5, their stability coefficient, in comparison with the non-strengthened ones, increases for the M12×1.0 taps; end mills Æ 36, and chisel cutters of S = 30 mm, respectively, by 8.0; 6.6 and 3.5 times.
References
H. Steiner, et al., “Experience with the dismantling of three secondary steam generators in unit A in gundremmingen by the ice-sawing technique,” Nuclear Engineering and Design, vol. 170, no. 1-3, pp. 165-173, 1997.
L. A. Nieves, et al., “Analysis of disposition alternatives for radioactive contaminated scrap metal,” Journal of the Franklin Institute, vol. 335, no. 6, pp. 1089-1103, 1998.
J. Malo, et al., “Agents causing occupational asthma,” Journal of Allergy and Clinical Immunology, vol. 123, no. 3,
pp. 545-555, 2009.
EPRI 2008 End-Use Energy Efficiency and Demand Response Program. [Electronic resource]. Available: https://www.epri.com/research/products/1025002 .
Статут Міжнародного агентства по атомній енергії (Зміни до Статуту додатково див. в документі (995_884) від 03.11.1999 ).
B. Valetin, “Deposition, characterisation, and sampling of radioactive aerosols,” Annals of the ICRP, vol. 32, no. 1-2, 2002.
A. Rizzo, et al., “The Critical Raw Materials in Cutting Tools for Machining Applications: A Review,” Materials (Basel), vol., 13, no. 6, р. 1377, 2020.
J. Li, Y. Huang, X. Meng, and Y. A. Xie, “Review on High Entropy Alloys Coatings: Fabrication Processes and Property Assessment,” Adv. Eng. Mater., vol. 21, no. 8, pp.1900343, 2019.
Н. В. Тарельник, Технологічні особливості модифікації поверхонь деталей насосів атомних електростанцій, моногр. Суми, Україна: Університетська книга, 2024, 200 с.
N. V. Tarelnyk, “Propertiesof Surfaces Partsfrom X10CrNiTi18-10 Steel Operatingin Conditions of Radiation Exposure Retailoredby Electrospark Alloying. I. Featuresof Topographyand Mechanical Propertiesof Coatings,” Metallofiz. NoveishieTekhnol., vol. 44, no. 8, pр. 1037-1058, 2022.
C. Agte, and R. Kohlermann, “Hilfsmetallarme Hartmetallegierungen,” Die Tech, vol. 10, pp. 686-689, 1957.
S. K. Li, J. Q. Li, Y. Li, F. S. Liu, and W. Q. Ao, “Dense pure binderless WC bulk material prepared by spark plasma sintering,” Mater. Sci. Technol. vol. 31, pр. 1749-1756, 2015.
K. Bobzin, “High-performance coatings for cutting tools,” Cirp J. Manuf. Sci. Technol., vol. 18, pр.1-9, 2017.
F. Klocke, and T. Krieg, “Coated Tools for Metal Cutting–Features and Applications,” Cirp Ann., vol. 48, pр. 515-525, 1999.
A. Vereschaka, E. Kataeva, N. Sitnikov, A. Aksenenko, G. Oganyan, and C. Sotova, “Influence of Thickness of Multilayered Nano-Structured Coatings Ti-TiN-(TiCrAl)N and Zr-ZrN-(ZrCrNbAl) N on Tool Life of Metal Cutting Tools at Various Cutting Speeds,” Coatings, vol. 8, no. 1, р. 44, 2018.
E. A. Levashov, A. G. Merzhanov, and D. V. Shtanskv, “Advanced technologies, materials and coatings developed in scientific-educational center of SHS,” Galvanotechnik, vol. 100, pр. 2102-2114, 2009.
J. Gu, G. Barber, S. Tung, and R.-J. Gu, “Tool life and wear mechanism of uncoated and coated milling inserts,” Wear, vol. 225-229, pр. 273-284, 1999.
A. A. Vereschaka, S. N. Grigoriev, N. N. Sitnikov, G. V. Oganyan, and A. Batako, “Working efficiency of cutting tools with multilayer nano-structured Ti-TiCN-(Ti,Al)CN and Ti-TiCN-(Ti,Al,Cr) CN coatings: Analysis of cutting properties, wear mechanism and diffusion processes,” Surf. Coat. Technol. vol. 332, pр. 198-213, 2017.
Y. Tamerabeta, M. Briouaa, M. Tamerabeta, and S. Khoualdia, “Experimental Investigation on Tool Wear Behavior and Cutting Temperature during Dry Machining of Carbon Steel SAE 1030 Using KC810 and KC910 Coated Inserts,” Tribol. Ind., vol. 40, pр. 52-65, 2018.
В. Б. Тарельник, та ін., Підвищення стійкості різального інструмента технологічними методами, навч. посіб. Суми, Україна: Університетська книга, 2011, 189 с.
М. Л. Шуляк, В. Б. Тарельник, Є. М. Гецович, О. О. Василенко, А. О. Доценко, «Зміцнення металорізальних інструментів електроіскровим легуванням пучком електродів,» Вісник Сумського національного аграрного університету, вип. 1, № 55, с. 111-116.
В. Б. Тарельник, Д. Б. Глушкова, О. П. Гапонова, Н. В. Тарельник, А. О. Доценко, і С. В. Павловський, «Спосіб зміцнення металорізальних інструментів», Патент України на корисну модель № 158217, МПК B23H9/00, B23P15/00., Опубл. 08.01.2025, Бюл. № 2/2025.
О. П. Гапонова, Н. В. Тарельник, В. Б. Тарельник, Т. І. Жиленко, О. М. Мисливченко, В. В. Дудченко, Н. Р. Голуб «Спосіб підвищення зносостійкості сталевих деталей обладнання, яке працює в умовах радіаційного випромінювання», Патент України на корисну модель № 152967, МПК (2023.01), B23H 1/06. / опубл. 03.05.2023, Бюл. № 18.
Downloads
-
pdf (Українська)
Downloads: 0
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).