Computer Vision Direction System

Authors

  • I. S. Kolesnyk Vinnytsia National Technical University
  • O. S. Gorodetska Vinnytsia National Technical University
  • N. V. Dobrovolska Vinnytsia National Technical University

DOI:

https://doi.org/10.31649/1997-9266-2025-179-2-187-194

Keywords:

HSV, computer vision, robot, OpenCV, USB camera

Abstract

One of the most relevant areas of development of artificial intelligence in recent years has become computer vision. The ability to see is the most important property of a person. It is with the help of vision that we receive the greatest amount of information about the world around us.

Thanks to the accumulated experience and knowledge, we easily recognize objects and distinguish them from each other, navigate in space. Over time, the idea arose to endow artificial intelligence with vision. However, despite the fact that modern computers have long surpassed humans in the field of computing and information processing, image analysis was rather important task for them.

Many things that only a few decades ago could only be found in science fiction literature have become an integral part of our lives today. For a modern person, there is nothing surprising in the fact, that robots work instead of workers in advanced automated factories, driverless cars drive on city roads, and artificial neural networks create masterpieces that are not inferior to the works of professional artists. 

The areas of application of computer vision are quite extensive: from industrial means of monitoring technical processes to autonomous control systems that make decisions based on the analysis of the received video information.

One of the most promising areas is the use of computer vision systems in automated logistics systems.

A striking example of this is the widespread use of transport robots by large modern companies, which ensure the movement of goods in an industrial environment without the participation of an operator. These machines are used in enterprises to transport raw materials — from warehouse to workshop, blanks — between production stages, finished products from production to warehouse and from warehouse to shipment. The use of such vehicles allows you to reduce transportation costs associated with the human factor and loss of time, increase safety at the enterprise, and speed up production processes.

Author Biographies

I. S. Kolesnyk, Vinnytsia National Technical University

Cand. Sc. (Eng.), Associate Professor of the Chair of Computer Engineering

O. S. Gorodetska, Vinnytsia National Technical University

Cand. Sc. (Eng.), Associate Professor of the Chair of Computer Engineering

N. V. Dobrovolska, Vinnytsia National Technical University

Cand. Sc. (Ped.), Associate Professor of the Chair of Computer Engineering

References

В. В. Смолій, Я. А. Савицька, М. Д. Місюра, і В. В. Шкарупило, Навчальний посібник з дисципліни Системи візуалізації та розпізнавання образів. Kиїв, Україна: ФОП Ямчинський О. В., 2020, 200 с.

С. М. Вовк, В. В. Гнатушенко, і М. В. Бондаренко, Методи обробки зображень та комп’ютерний зір. Дніпро, Україна:«ЛІРА», 2016, 148 с.

Є. В. Бодянський, Д. Д. Пелешко, О. А. Винокурова, С. В. Машталір, і Ю. С. Іванов, Аналіз та обробка потоків даних засобами обчислювального інтелекту, моногр. Львів, Україна: вид-во Львівської політехніки, 2016, 236 с.

А. С. Довбиш, і І. В. Шелехов Основи теорії розпізнавання образів, навч. посіб. у 2 ч. Суми, Україна: Сумський державний університет, 2015, ч. 1, 109 с.

О. М. Березький, та ін., Методи, алгоритми і програмні засоби опрацювання біомедичних зображень. Тернопіль, Україна: Економічна думка, ТНЕУ, 2017, 330 с.

Ю. М. Рашкевич, Р. О. Ткаченко, І. Г. Цмоць, і Д. Д. Пелешко, Нейроподібні методи, алгоритми та структури обробки сигналів і зображень у реальному часі, моногр. Львів, Україна: вид-во Львівської політехніки, 2017, 256 с.

K. William Pratt, Digital image processing, Third Edition. John Wiley & Sons, Inc., 2019, 723 c.

R. J. Shalkoff, Digital image processing and computer vision, New York-Chichester-Brisbane-TorontoSingapore: John Wiley & Sons, 1989, 489 p.

Contours in Open CV. Retrieved May 1, 2018, [Electronic resource]. Available: https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_contours/py_contours_begin/py_contours_begin.html#contours-getting-started .

Color Detection & Object Tracking. [Electronic resource]. Available: https://www.opencv-srf.com/2010/09/object-detection-using-color-seperation.html . Accessed 20.11.2023.

Davies, ER Computer and Machine Vision: Theory, Algorithms, Practicalities, ER Davies. Oxford: Academic Press is imprint of Elsevier, 2012. ISBN: 978-0-12-386908-1.

Downloads

Abstract views: 15

Published

2025-04-25

How to Cite

[1]
I. S. Kolesnyk, O. S. Gorodetska, and N. V. Dobrovolska, “Computer Vision Direction System”, Вісник ВПІ, no. 2, pp. 187–194, Apr. 2025.

Issue

Section

Radioelectronics and radioelectronic equipment manufacturing

Metrics

Downloads

Download data is not yet available.

Most read articles by the same author(s)