Improving the Quality of Short-Term Forecasting of Photoelectric Power Plant Generation Volumes Based on Recurrent Neural Networks
DOI:
https://doi.org/10.31649/1997-9266-2025-182-5-25-35Keywords:
photovoltaic plants, generation forecasting, SERNN, machine learning, meteorological data, short-term forecastingAbstract
This paper presents an in-depth study of modern approaches to forecasting electricity generation by solar photovoltaic plants (PVPs), which is an important element of the development of renewable energy in the context of decentralized energy supply and the growth of the share of "green" energy in the energy balance. Particular attention is paid to the Sensitivity-Enhanced Recurrent Neural Network (SERNN) model, which combines the advantages of recurrent neural networks with adaptive sensitivity to changes in input meteorological parameters. The proposed approach is based on taking into account key climatic factors, directly affecting the volume of solar energy generation, in particular global solar radiation, ambient temperature, cloudiness, and seasonal fluctuations. It is shown that, unlike classical models such as linear regression or traditional neural networks such as LSTM, the SERNN model demonstrates the ability to flexibly respond to rapid changes in weather conditions due to the built-in mechanism for dynamic adaptation of weight coefficients. The study examines in detail the stages of input data preprocessing that are critical for ensuring the quality of training and forecast accuracy, in particular: scaling (normalization) of indicators, encoding time features in the form of sinusoidal functions to reflect daily and seasonal cycles, as well as filtering or correcting anomalous values that may distort the model results. Based on the real observation data from several photovoltaic installations, the high efficiency of using SERNN in short-term forecasting tasks was experimentally confirmed. In particular, a significant reduction in the mean absolute error (MAE) and root mean square error (RMSE) was recorded compared to alternative approaches. The proposed model also demonstrated the stability of results during periods of high variability in weather conditions, which is especially important for energy planning and network optimization. Overall, the study confirms the potential of deep neural networks with a weather-sensitive mechanism as a promising tool for accurate forecasting of PV power generation. This opens up new opportunities for integrating renewable energy sources into the power system while minimizing technical and financial risks associated with imbalances.
References
F. Fattori, and N. Anglani, “Review on the stochastic nature of photovoltaic generation and its impact on the energy systems: Why it matters,” in 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 2015, pp. 1122-1129. https://doi.org/10.1109/ECCE.2015.7309816 .
Д. С. Матушкін, «Огляд сучасних методів прогнозування сонячної енергії,» Матеріали аспірантських читань пам’яті професора Артура Праховника, 2021, с. 34-38. Київ, Україна. [Electronic resource]. Available: https://ela.kpi.ua/handle/123456789/54577 .
А. Свердлова, «Прогнозування генерації сонячних панелей на основі погодних даних за допомогою машинного навчання,» Молодий вчений, № 7 (131), с. 57-63, 2024. https://doi.org/10.32839/2304-5809/2024-7-131-2 .
Д. С. Матушкін, «Короткострокове прогнозування генерування фотоелектричних станцій для задач зменшення небалансів в енергосистемі,» с. 78-95. [Electronic resource]. Available: https://ela.kpi.ua/items/352e0241-80bf-4ccb-81b5-1c28aab5bb7e .
D. S. Zaruba, M. Y. Shvets, and Y. V. Khokhlov, “Machine Learning for Power Consumption and Generation Prediction,” pp. 35-49. [Electronic resource]. Available: https://ela.kpi.ua/server/api/core/bitstreams/e5129d6a-dfb9-4841-b37b-ca6de50c3603/content .
П. О. Зінькевич, В. В. Шпак, і М. В. Маслій, «Порівняльний аналіз інтелектуальних методів прогнозування генерації електроенергії фотоелектричними станціями (ФЕС),» в Сучасні методи, інформаційне, програмне та технічне забезпечення систем керування організаційно-технічними та технологічними комплексами, Київ, Україна, 2024, pp. 61-62. [Electronic resource]. Available: https://dspace.nuft.edu.ua/handle/123456789/46285 .
О. А. Ковальчук, П. Д. Лежнюк, В. О. Комар, і С. В. Кравчук, «Прогнозування графіка генерування фотоелектричних станцій на наступну добу,» с. 320-323. [Electronic resource]. Available: https://ela.kpi.ua/handle/123456789/62592 .
C. Gerdenitsch, L. Deinhard, and P. Hold, “Cognitive Assistance to Support Maintenance and Assembly Tasks: Results on Technology Acceptance of a Head-Mounted Device,” pp. 276-284. [Electronic resource]. Available: https://www.researchgate.net/publication/350583456 .
E. Chodakowska, et al., “ARIMA Models in Solar Radiation Forecasting in Different Geographic Locations,” Energies, vol. 16, no. 13, рр. 5029, 2023. https://doi.org/10.3390/en16135029 .
M. Paturzo, “Optimized Random Forest for Solar Radiation Prediction Using Hyperparameter Tuning,” Sensors, vol. 22, no. 18, 6912, 2022. https://doi.org/10.3390/s22186912 .
J. Yu, X. Li, et al., “Deep Learning Models for PV Power Forecasting: Review,” Energies, vol. 17, no. 16, 3973, 2024.
R. M. Rizk-Allah, et al., “Explainable AI and Optimized Solar Power Generation Forecasting Model Based on Environmental Conditions,” PLoS ONE, vol. 19, no. 10, e0308002, 2023. https://doi.org/10.1371/journal.pone.0308002 .
Downloads
-
pdf (Українська)
Downloads: 0
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).