Intellectual Information System for Recognition and Food Product Composition Analysis

Authors

  • Yu. S. Zditovetskyi Vinnytsia National Technical University
  • O. V. Bisikalo Vinnytsia National Technical University
  • Yu. Yu. Ivanov Vinnytsia National Technical University

DOI:

https://doi.org/10.31649/1997-9266-2023-167-2-66-71

Keywords:

food product, product composition, E-additives, recognition system, neural networks, programming, software application

Abstract

Taking into account the long-term COVID-19 effects, doctors have suggested a specific diet, as quality foods are important for a healthy lifestyle, as well as fighting with various chronic diseases. Advances in technology encourage manufacturers to increase profits and reduce production costs by using flavorings and specific food additives (E-additives), as well as their synthetic combinations, each of which has a number of features. The international collection of food standards Codex Alimentarius includes a list of about 500 types of original E-additives, which can be natural, identical to natural or synthetic. A number of such additives have a negative effect on the human organism, some of them have not been fully researched, that potentially creates the risk of genetic mutations and, accordingly, autoimmune and carcinogenic effects in the future. That is why it is important for the buyer of a certain food product to quickly identify the product composition, analyze the relevant additives in it, their dangers “online” at the storefront using mobile devices and the Internet.

Recently, modern developments have been considered through the prism of artificial intelligence, accordingly, such models, which will be oriented to work with food products, will help support people’s desire for healthy food. This article briefly describes the developed intelligent information system, which, to achieve the goal, applies machine learning models on a database with food products, a barcode scanner with an additional correction procedure, if it is highly damaged, a regular expression apparatus, a text similarity metric, and also a product rating system. The corresponding software application works in three modes on the iOS and Android platforms: product recognition, barcodes recognition, composition analysis and product evaluation. The program allows buyer to get information about the product, its composition, an additives list, scientific information on them, the rating of the product “usefulness”, its comparison with similar products, etc.

Author Biographies

Yu. S. Zditovetskyi, Vinnytsia National Technical University

Post-Graduate Student of the Chair of Automation and Intellectual Information Technologies

O. V. Bisikalo, Vinnytsia National Technical University

Dr. Sc. (Eng.), Professor, Professor of the Chair of Automation and Intelligent Information Technologies

Yu. Yu. Ivanov, Vinnytsia National Technical University

Cand. Sc. (Eng.), Associate Professor, Associate Professor of the Chair of Automation and Intellectual Information Technologies

References

А. В. Бабюк, та ін., Безпека харчування: сучасні проблеми. Чернівці, Україна: Книги-ХХІ, 2005, 454 с.

C. В. Нагірний, Я. Г. Бондарєв, і Л. В. Нечволода, «Використання нейромережевих технологій у системах розпізнавання образів для оцінювання безпечності продуктів харчування,» на Міжнародній науковій конференції Ком¬п’ютерні технології обробки даних, 2020, с. 40-43.

Т. B. Kumar, et al., “A Novel Model to Detect and Classify Fresh and Damaged Fruits to Reduce Food Waste Using a Deep Learning Technique,” Journal of Food Quality, pp. 1-8, 2022. https://doi.org/10.1155/2022/4661108 .

ISO 22000 : 2005. Системи управління безпечністю харчових продуктів – Вимоги до будь-яких організацій харчового ланцюга. [Електронний ресурс]. Режим доступу: http://www.codexalimentarius.net . Дата звернення: 26.01.2022.

А. А. Дубініна, Токсичні речовини у харчових продуктах та методи їх визначення. Київ, Україна: Професіонал, 2007, 375 с.

В. І. Смоляр, «Сучасні проблеми використання харчових добавок,» Проблеми харчування, Київ, Україна: Інститут екології і токсикології імені Л. І. Медведя, с. 5-13, 2009.

О. Кратко, і М. Янків, «Вивчення небезпечного впливу продуктів харчування на здоров’я людини,» Грааль науки, № 1, с. 167-170, 2021.

K. Shiraly, “AI in Nutrition: How Technology is Transforming what We Eat,” [Electronic resource]. Available: https://www.width.ai/post/ai-in-nutrition. Accessed: 20.03.2023.

Open Food Facts. [Electronic resource]. Available: https://play.google.com/store/apps/details?id=org.openfoodfacts.scanner. Accessed: 20.03.2023.

FoodVisor. [Electronic resource]. Available: https://www.foodvisor.io/. Accessed: 20.03.2023.

Сканер їжі. [Electronic resource]. Available: https://play.google.com/store/apps/details?id=food.scanner&hl=uk. Accessed: 20.03.2023.

Yu.Yu. Ivanov, D. O. Kruts, and H. B. Rakytyanska, “An Algorithm for Training Artificial Neural Network Based on Adaptive Moments Estimation,” на Мiжнародній науково-практичній Інтернет-конференції Електронні інформаційні ресурси: створення, використання, доступ, Суми/Вiнниця, Україна: НІКО / ВНТУ, 2022, c. 117-119.

A. A. N. Tato, and N. Nkambou, “Improving ADAM Optimizer,” in International Conference on Learning Representations, 2018, pp. 1-4.

ISO/IEC 18004 : 2015. Estonian Centre for Standardization. [Electronic resource]. Available: https://www.evs.ee/ products/iso-iec-18004-2015. Accessed: 26.01.2023.

T. K. Moon, Error Correction Coding: Mathematical Methods & Algorithms, John Wiley & Sons, 2005, 750 p.

V. V. Pivoshenko, and Yu.Yu. Ivanov, “Method for Recognition Highly Corrupted Barcodes,” на VIII Міжнародній конференції з оптико-електронних інформаційних технологій “Photonics-ODS”, Вiнниця, Україна: ВНТУ, 2018, с. 55.

F. Lopez, and V. Romero, Mastering Python Regular Expressions. Packt Publishing, 2014, 110 p.

Yu. S. Zditovetskyi, O. V. Bisikalo, and Yu. Yu. Ivanov, “Overview and Numerical Examples of the Text Similarity Metrics,” in Scientific and practical international conference “Science and Technology: Problems, Prospects and Innovations,” Osaka, Japan: CPN Publishing Group, 2022, pp. 184-188.

F. Zammetti, Modern Full-Stack Development: Using TypeScript, React, Node.js, Webpack, and Docker. APress, 2020, 396 p.

A. Yudin, Building Versatile Mobile Apps with Python and REST: RESTful Web Services with Django and React.‎ APress, 2020, 364 p.

Downloads

Abstract views: 174

Published

2023-05-04

How to Cite

[1]
Y. S. Zditovetskyi, O. V. . Bisikalo, and Y. Y. Ivanov, “Intellectual Information System for Recognition and Food Product Composition Analysis ”, Вісник ВПІ, no. 2, pp. 66–71, May 2023.

Issue

Section

Information technologies and computer sciences

Metrics

Downloads

Download data is not yet available.