Assessment of the Functional State of Microcirculation of the Blood in Human Tissues by Methods of Speklemetria and Doppler Flowmetry

Authors

  • N. D. Abramovich Belarusian State University of Informatics and Radio Electronics, Minsk
  • S. K. Dik Belarusian State University of Informatics and Radio Electronics, Minsk
  • L. O. Vasilevska Republican Scientific and Practical Center of Neurology and Neurosurgery, Minsk
  • I. I. Khludeiev Belarusian State University, Minsk
  • V. H. Petruk Vinnytsia National Technical University
  • S. M. Kvaterniuk Vinnytsia National Technical University

DOI:

https://doi.org/10.31649/1997-9266-2018-141-6-7-17

Keywords:

specklemetry, microcirculation, Doppler flowmetry

Abstract

Based on an analytical method for estimating parameters of a speckle structure formed by multiple scattered light in multilayer biological tissue such as human skin at visible wavelengths - the near-IR range, using known solutions of the radiation transfer equation in biological tissue and linking the theory of light propagation in a scattering medium to coherence theory built a mathematical model of the propagation of laser radiation in biological tissue. Using the mechanics of multiphase media, blood for mathematical modeling was initially considered a two-phase viscous suspension consisting of two phases: a parietal and an axial plasma layer with erythrocytes. The blood flow through vessels was modeled taking into account a number of anomalous effects (rheological properties) of blood flow: the Farus effect, the non-erythrocyte parietal plasma layer, the Farus — Lindquist effect, and the blunt blood velocity profile. The characteristics of microcirculation in human tissues were investigated by a non-invasive speckle-optical method using the Speckle-Scan device. In the frequency range of 40-1000 Hz, the power of the spectrum, the average frequency of the spectrum, and the root-mean-square velocity of the particles were determined. At the same time, skin microhemodynamics was investigated using Doppler ultrasound (USDG) using the Minimax-Doppler-K device. The mean linear and average volumetric blood flow rates were determined from the average velocity curve. The data obtained by the USDG and the Speckle-Scan devices were compared with each other and with a mathematical model of the propagation of laser radiation in the microcirculation channel. It was established that the parameter “average frequency of the spectrum” largely reflects the perfusion, and the area under the spectral curve reflects the capacity of the capillary bed. It has been established that the average power of the spectrum of fluctuations of the intensity of scattered radiation after decompression of a vessel increases by about 15 % in comparison with the normal state. The autocorrelation functions of the field fluctuations are obtained when the particles are scattered back at different pressures after decompression of the brachial artery into a difference in the time periods for registering changes. The slope of the autocorrelation function, depending on pressure, can be used to diagnose the tone (elasticity) of blood vessels. Methodical approaches are proposed for evaluating the obtained data in order to verify speckle measurements using the widely used Doppler flowmetry technique.

Author Biographies

N. D. Abramovich, Belarusian State University of Informatics and Radio Electronics, Minsk

Post-Graduate Student of the Chair of Electronic Engineering and Technology

S. K. Dik, Belarusian State University of Informatics and Radio Electronics, Minsk

Cand. Sc. (Ph.-Math.), Assistant Professor, First Vice Chancellor

L. O. Vasilevska, Republican Scientific and Practical Center of Neurology and Neurosurgery, Minsk

Cand. Sc. (Medicine), Assistant Professor, Leading Researcher

I. I. Khludeiev, Belarusian State University, Minsk

Cand. Sc. (Biology), Assistant Professor, Senior Researcher of the Scientific Research

V. H. Petruk, Vinnytsia National Technical University

Dr. Sc. (Eng.), Professor, Director of the Institute of Environmental Security and Environmental Monitoring

S. M. Kvaterniuk, Vinnytsia National Technical University

Cand. Sc. (Eng.), Assistant Professor, Associate Professor of the Chair of Ecology and Ecological Safety

References

Н. Д. Абрамович и др. «Моделирование спекл-структуры светового поля внутри многослойной ткани кожи,» Инженерно-физический журнал, № 6 (86), с. 1288-1295, 2013.

С. К. Дик, Лазерно-оптические методы и технические средства контроля функционального состояния биообъектов. Минск, РБ: Изд. БГУИР, 2014. 235 с.

Л. С. Долин, «Уравнения для корреляционных функций волнового пучка в хаотически неоднородной среде,» Изв. Вузов. Радиофизика, № 6 (11), с. 840-849, 1968.

Э. П. Зеге, А. П. Иванов, и И. Л. Кацев, Перенос изображения в рассеивающей среде. Минск, СССР: Наука и техника, 1975, 327 с.

А. П. Иванов, и И. Л. Кацев, «О спекл-структуре светового поля в дисперсной среде, освещенной лазерным пучком,» Квантовая электроника, № 7 (35), с. 670-674, 2005.

A. R. Pries, and T.W. Secomb, “Blood flow in microvascular networks” in Microcirculation. Elsevier, pp. 3-36, 2008.

B. Ackerson et al., “Correlation transfer-application of radiative transfer solution methods to photon correlation problems,” Thermophys Heat Transfer, № 4 (6), рp. 577-588, 1992.

R. Dougherty et al., “Correlation transfer: development and application,” Journal of Quantitative Spectroscopy and Radiative Transfer, № 6 (52), рp. 713-727, 1994.

Ф. М. Морс, и Г. Фешбах, Методы теоретической физики, т. 1. Москва: Рипол Классик, 2013, 936 с.

S. A. Walker, D. A. Boas, and E. Gratton, “Photon density waves scattered from cylindrical inhomogeneities: theory and experiments”, Appl Opt., № 10 (37), p. 1935-1944, 1998.

Г. Ван де Хюлст, Рассеяние света малыми частицами. Москва: изд-во иностр. литературы, 1961, 536 с.

G. Maret, and P. E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers”, Zeitschrift fur Physik B Condensed Matter, no. 65 (4), p. 409-413. 1987.

D. J. Pine et al., “Diffusing wave spectroscopy,” Phys. rev. lett., no. 60(12), рp. 1134-1137, 1988.

M. J. Stephen, “Temporal fluctuations in wave propagation in random media,” Phys. Rev., B Condens. Matter., no. 37 (1), p. 1-5, 1988.

Н. Б. Базылев, и Н. А. Фомин, Количественная визуализация течений, основанная на спекл-технологиях. Минск: Беларуская навука, 2016, 392 с.

R. Bonner, and R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl Opt., no. 20 (12), рp. 2097-2107, 1981.

В. В. Тучин, Оптика биологических тканей: методы рассеяния света в медицинской диагностике. Москва: Физматлит, 2013, 812 с.

C. Wright, C. Kroner, and R. Draijer, “Non-invasive methods and stimuli for evaluating the skin’s microcirculation,” Journal of pharmacological and toxicological methods, no. 54 (1), рp. 1-25, 2006.

M. Roustit, and J. L. Cracowski, “Noninvasive assessment of skin microvascular function in humans: an insight into methods,” Microcirculation, no. 19 (1), рp. 47-64, 2012.

A. Bircher, E.M. Boer, T. Agner et al., “Guidelines for measurement of cutaneous blood flow by laser Doppler flowmetry”, Contact dermatitis, no. 30 (2), p. 65-72, 1994.

J. K. Wilkin, “Periodic cutaneous blood flow during postocclusive reactive hyperemia,” American Journal of Physiology-Heart and Circulatory Physiology, no. 250 (5), рp. H765-H768, 1986.

А. М. Чернух, П. Н. Александров, и О. В. Алексеев, Микроциркуляция. под общей ред. акад. А. М. Чернуха. Москва: Медицина, 1984. 432 с.

Downloads

Abstract views: 550

Published

2018-12-28

How to Cite

[1]
N. D. Abramovich, S. K. Dik, L. O. Vasilevska, I. I. Khludeiev, V. H. Petruk, and S. M. Kvaterniuk, “Assessment of the Functional State of Microcirculation of the Blood in Human Tissues by Methods of Speklemetria and Doppler Flowmetry”, Вісник ВПІ, no. 6, pp. 7–17, Dec. 2018.

Issue

Section

Automation and information-measuring equipment

Metrics

Downloads

Download data is not yet available.