ДО ПИТАННЯ ВИБОРУ ОПТИМАЛЬНОЇ МАТЕМАТИЧНОЇ МОДЕЛІ СТАЦІОНАРНОГО ЧАСОВОГО РЯДУ
Ключові слова:
стаціонарний часовий ряд, динамічна система, вихідний сигнал, модель авторегресії – ковзного середнього, білий шумАнотація
Доведено, що оптимальною математичною моделлю стаціонарного часового ряду є модель авторегресії – ковзного середнього, що має третій порядок і по авторегресійній складовій і по складовій ковзного середнього. В доведенні використано той факт, що динамічна система, аби бути керованою в режимі забезпечення стійкості, не може описуватись диференціальним рівнянням, що має порядок нижчий за третій. При переході від похідних до різниць відповідного порядку диференціальне рівняння третього порядку трансформується у різницеве рівняння третього порядку відносно відліків вихідного сигналу динамічної системи. Саме з цього різницевого рівняння, як наслідок, випливає третій порядок авторегресійної складової для вихідної координати цієї динамічної системи, якщо у вихідному сигналі, який дискретизується, а тому перетворюється у часовий ряд, враховувати і випадкову складову. А для доведення, що третій порядок складової ковзного середнього в математичній моделі авторегресії – ковзного середнього, є оптимальним, використано той факт, що будь-який стаціонарний стохастичний вхідний сигнал динамічної системи можна синтезувати, використовуючи модель фільтра, на вхід якого подається зважена сума імпульсів білого шуму зі сталим спектром, та той факт, доведений авторами цієї статті, що у цій зваженій сумі імпульсів білого шуму за оптимального вибору ваг достатньо утримувати лише імпульс, який генерується в момент часу, що спостерігається, та два попередні імпульси, що передують цьому моменту. І оскільки ця зважена сума трьох імпульсів білого шуму є моделлю ковзного середнього для авторегресійної моделі динамічного об’єкта, на вході якого діє сигнал у вигляді часового ряду, то це і є доказом того, що оптимальним порядком математичної моделі дискретизованого вихідного сигналу динамічної системи у вигляді авторегресії – ковзного середнього і по складовій ковзного середнього є третій.
##submission.downloads##
-
PDF
Завантажень: 83
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Автори, які публікуються у цьому журналі, згодні з такими умовами:
- Автори зберігають авторське право і надають журналу право першої публікації.
- Автори можуть укладати окремі, додаткові договірні угоди з неексклюзивного поширення опублікованої журналом версії статті (наприклад, розмістити її в інститутському репозиторії або опублікувати її в книзі), з визнанням її первісної публікації в цьому журналі.
- Авторам дозволяється і рекомендується розміщувати їхню роботу в Інтернеті (наприклад, в інституційних сховищах або на їхньому сайті) до і під час процесу подачі, оскільки це сприяє продуктивним обмінам, а також швидшому і ширшому цитуванню опублікованих робіт (див. вплив відкритого доступу).