Automation of the Use of Natural Language Queries for Comprehensive Analysis of the State of Surface Waters in the Southern Bug River Basin

Authors

  • Ye. M. Kryzhanovskyi Vinnytsia National Technical University
  • V. O. Karavaev Vinnytsia National Technical University
  • I. M. Shtelmakh Vinnytsia National Technical University
  • O. O. Voitsekhovska Vinnytsia National Technical University

Keywords:

geographic information systems, water monitoring, large language models, adaptive parsing, data analysis

Abstract

The article considers a modern approach to a comprehensive analysis of the state of surface waters in the Southern Bug River basin by integrating digital technologies necessary for the automation of natural language queries. The basis of the proposed approach is the synergy of geographic information systems (GIS), intelligent data processing tools, adaptive parsing of large arrays of monitoring information and artificial intelligence algorithms - in particular, large language models. Considerable attention is paid to the automation of the processes of collection, pre-processing, structuring and visualization of environmental data, which ensures high-quality preparation of the information environment for making management decisions. The developed approach allows for a spatio-temporal analysis of the state of water resources, identification of key pollution trends and a comprehensive analysis of the state of surface waters in the Southern Bug basin by using natural language queries. The approach was tested within the framework of the implementation of a web system on real data for monitoring the state of surface waters of the Southern Bug basin and the successful testing of this system in the direction of correct processing of natural language queries.

The use of large language models for the analysis of the state of surface waters significantly simplifies the process of forming various environmental reports, quality classifications and solving other applied problems of analyzing data on the state of surface waters monitoring.

The results obtained emphasize the feasibility of creating flexible information systems for monitoring the state of surface waters, which combine the capabilities of spatial analysis, natural language processing and machine learning. This allows for making informed management decisions and promptly responding to changes in the environmental state. The proposed approach can be adapted to other water basins or sub-basins, opening up new opportunities for sustainable management of natural resources.

Author Biographies

Ye. M. Kryzhanovskyi, Vinnytsia National Technical University

Cand. Sc. (Eng.), Associate Professor, Associate Professor of the Chair of System Analysis and Information Technologies

V. O. Karavaev, Vinnytsia National Technical University

Student of the Department of Intelligent Information Technologies and Automation

I. M. Shtelmakh, Vinnytsia National Technical University

Cand. Sc. (Eng.), Assistant of the Chair of System Analysis and Information Technologies

O. O. Voitsekhovska, Vinnytsia National Technical University

PhD, Senior Lecturer of the Chair of System Analysis and Information Technologies

References

H. Zhang, “AI and Big Data in Water Environments,” ACS ES&T Water, vol. 2, issue 6, pp. 904-906, 2022. https://doi.org/10.1021/acsestwater.2c00203 .

D. B. Olawade, et al., “Artificial intelligence in environmental monitoring: Advancements, challenges, and future directions,” Hygiene and Environmental Health Advances, vol. 12, 100114, 2024. https://doi.org/10.1016/j.heha.2024.100114 .

В. Б. Мокін, М. А. Гораш, Є. М. Крижановський, і Т. Є. Вуж, «Інформаційна інтелектуальна технологія автоматизованої геоприв’язки екологічної текстової природно-мовної інформації,» Наукові праці ВНТУ, № 4, 2022. [Електронний ресурс]. Режим доступу: https://praci.vntu.edu.ua/index.php/praci/article/view/624 .

European Environment Agency. Europe’s State of Water 2024: The need for improved water resilience. EEA Report no. 07/2024. [Online]. Available: https://www.eea.europa.eu/en/analysis/publications/europes-state-of-water-2024 .

M. Landt-Hayen, et al., “A climate index collection based on model data,” Environmental Data Science, vol. 2, pp. 1-13, 2023. https://doi.org/10.1017/eds.2023.5 .

Кабінет Міністрів України. Постанова від 19 вересня 2018 р. № 758 (зі змінами № 1071 від 06.09.2024) «Про затвердження порядку здійснення державного моніторингу вод». [Електронний ресурс]. Режим доступу: https://zakon.rada.gov.ua/laws/show/1071-2024-%D0%BF#n25 .

Веб-система «Моніторинг та екологічна оцінка водних ресурсів України». 2024. [Електронний ресурс]. Режим доступу: http://monitoring.davr.gov.ua/EcoWaterMon/GDKMap/Index .

C. Kermorvant, et al., “Understanding links between water-quality variables and nitrate concentration in freshwater streams using high-frequency sensor data,” Plos one, vol. 18, issue 6, e0287640, 2023. https://doi.org/10.1371/journal.pone.0287640 .

В. Б. Мокін, Є. М. Крижановський, і М. П. Боцула, Інформаційна технологія інтегрування математичних моделей у геоінформаційні системи моніторингу поверхневих вод, моногр. Вінниця, Україна: ВНТУ, 2011. [Електронний ресурс]. Режим доступу: https://ir.lib.vntu.edu.ua/bitstream/handle/123456789/1943/Mokin_ITIntegrMatModelUGeoinformSistMonitPoverhVod394.pdf?sequence=1&isAllowed=y .

Y. Tian, et al., “Advancing Large Language Models for Spatiotemporal and Semantic Association Mining of Similar Environmental Events,” Transactions in GIS, vol. 29, e13282, 2025. https://doi.org/10.1111/tgis.13282 .

Abstract views: 0

Published

2025-10-10

How to Cite

[1]
Y. M. Kryzhanovskyi, V. O. Karavaev, . I. M. Shtelmakh, and O. O. Voitsekhovska, “Automation of the Use of Natural Language Queries for Comprehensive Analysis of the State of Surface Waters in the Southern Bug River Basin”, Вісник ВПІ, no. 4, pp. 118–125, Oct. 2025.

Issue

Section

Information technologies and computer sciences

Metrics

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >>